

A-LEVEL COMPUTER SCIENCE

PROGRAMMING PROJECT

Ben Mullan

Version: Final RC0

March 2023

B

1

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

Note: It is useful to open the Navigation Side-Bar in MS Word, to be able to see the structure of the

document at all times.

A DocX version of this document is available here.

Contents
Introduction 7

Hello, World! 7

DocScript in 3 Minutes 7

Analysis 8

Problem Identification 8

Stakeholders 8

Why this problem is suited to a Computational Solution 10

Specific Computational Principles Employed 10

Problem Recognition and Decomposition 10

Pattern Recognition 11

Automation 11

Divide and Conquer 11

Abstraction 12

Interviews and Analysis Thereof 12

Questions 12

All Stakeholders 12

Hobbyist Use 13

Educational Use 13

Questions’ Explanation and Justification 13

Responses 14

Analysing the Responses 17

Existing Similar Products 20

1) Chrome’s JavaScript Console 20

Noteworthy Features 20

Limitations 21

Components Applicable to My Product 21

2) BaseConverter / BasedNumber Finder 21

Noteworthy Features 21

Limitations 22

Components Applicable to My Product 22

3) CScript.exe / WScript.exe 22

Noteworthy Features 23

Limitations 23

Components Applicable to My Product 23

4) Visual Studio 23

Noteworthy Features 24

Limitations 24

https://1drv.ms/f/s!AlUs85FIEgtQhyGTIRj17AAWBPt6?e=UjutA1

B

2

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

Components Applicable to My Product 25

Features of the Proposed Solution 25

Limitations of the Proposed Solution 26

Hardware and Software Requirements 27

Hardware 27

Software 27

Stakeholder Requirements 27

Further Meeting with the Stakeholders 27

Requirements for the Programming Language 28

Requirements for the Implementations 29

Success Criteria 30

Design 32

Overview 32

Formal Language Specification 32

Choosing a Name 32

General 32

Syntax 35

Operators 39

Research 39

Characteristics 39

Terminology 39

Expression Operators Table 40

Rules 40

Explanations & Justifications 40

Instructions 41

An Example DocScript Program 42

DocScript System Architecture 43

At a Glance 43

Explanations & Justifications 43

To Compile, or not to Compile 44

The Three Stages of DocScript Interpretation 45

Parsing & Tokens 47

Token Types 48

TokenType Regular Expressions 48

Parsing Algorithm Pseudocode 49

Lexing & Instructions 49

Instruction Classes & Interfaces 49

Instruction Classes Diagram 50

Instruction Class Members 50

Instruction Trees 51

Lexing Algorithm Pseudocode 51

Execution & I/O Delegates 52

The ExecutionContext Class [DocScript.Runtime.ExecutionContext] 52

Other Key Classes 53

B

3

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

Expressions [DocScript.Language.Expressions.IExpression] 53

Programs [DocScript.Runtime.Program] 55

Key Algorithms 56

The Stack-Balanced Algorithm 56

The Unique Elements Algorithm 57

Key (Global) Variables 57

Namespaces 59

Piecing It All Together! 60

The DocScript Implementations 61

The Windows IDE (DSIDE.EXE) 61

User Interface Modelling 62

GUI Component Explanations & Justifications 64

Where’s the Validation? 64

Usability Features 64

The Windows CLI (DSCLI.EXE) 65

The Web Console (DocScript Interactive) 66

DSInteractive API Sequence Diagram 67

DSI DataBase Tables 68

Entity Relationship Diagram 68

The ExecutionSession Object 71

Front-end Pages 71

Server-side Validation 72

Stakeholder Input 72

Testing 73

Inputs & Outputs 73

Testing Techniques 73

Unit Testing 73

Destructive Testing 73

Stakeholder Testing 73

Test Data 74

DocScript Source 74

Standalone Expressions 74

API URL Calls 75

Command-Line Arguments 75

Explanations & Justifications 75

Testing Checklist (Interpreter DLL) 76

Post-Development 77

Post-Development Testing 77

Data to be Used Herefor 77

Development and Testing 79

Overview 79

Programming Conventions Used Herein 79

Naming Conventions 79

Explanations and Justifications 80

Modularity and Encapsulation 80

Explanations and Justifications 80

B

4

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

Comments and Annotations 80

Explanations and Justifications 81

Writeup Segments 81

[Stage 1] Core Interpretation Engine (DLL) Development 82

Parser 82

The Token Class 82

The Parser Module 84

Constants 84

GetTokensFromSource() 84

Modularity and Structure Considerations 85

Validation 85

Iterative Testing 86

Creating the Scratch-Testing Project 86

Debugging 87

Wait: Bootstrapping! 91

Logging 91

Custom Exceptions 92

KVP-Serialisation 93

Compiler-Extension Methods 93

Lexing 94

Expressions 94

Expression Classes 95

ConstructExpressionFromTokens() 97

How does that work then? 98

Testing: Example Constructed Expression Trees 98

Debugging 100

Instruction Classes 101

Terminal Instructions 101

VariableDeclaration 101

Testing 102

VariableAssignment, ReturnToCaller, and FunctionCall 103

Statement Instructions 105

Execution 110

IInstruction.Execute() 110

IExpression.Resolve() 112

Program.Run() 113

[Stage 2] Command-line Interpreter (DSCLI.EXE) Development 115

Writing the CLA-Manager 115

The Surprisingly-simple Implementation 116

Using the Interpreter 117

Debugging 118

Incorrect Program XML Serialisation 118

Console closing immediately 119

Iterative Testing 120

[Stage 3] Windows IDE (DSIDE.EXE) Development 121

WPF and XAML 121

Keyboard Shortcuts 122

Implementing the DocScript DLL 123

B

5

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

Standalone Expression Resolution Utility (DSExpr.EXE) 123

Using the Interpreter 124

Debugging 126

Syntax-highlighting Nightmares 126

Null-Program Trees 129

While Loop Variable Scope 130

Iterative Testing 132

[Stage 4] DocScript Interactive (DSI) Development 133

Writing the API 133

Implementing the DocScript DLL 135

SQL Server Interaction 136

Database Structure 138

Client-side Pages and Scripts 141

Scripting: Linking the Back- to the Front-end 144

Iterative Testing 147

[Stage 5…] Whole-Program Testing 148

British Informatics Olympiad Question 148

Review 150

Primes-Below-100-Base-2-To-32 Example 151

Review 153

Improvements to make, revealed by the Tests 153

[…Stage 5…] Scenario-based Testing 156

Remote Command-line Usage 156

Review and Improvements Herefrom 156

Administrative Scripting 157

Review and Improvements Herefrom 158

Mathematical-Expression Resolution 158

Review and Improvements Herefrom 159

Interactive Multi-Client Execution 159

Review and Improvements Herefrom 161

[…Stage 5…] Unit-Testing 161

[…Stage 5] Stakeholder-Testing 163

Stakeholder Feedback 163

Final Prototype 167

Development Review 168

Revisiting the Requirements and Success Criteria Tables 168

DocScript in 3 Minutes 171

Testing and Evaluation 172

Overview 172

Reliability and Robustness 172

Predictability 173

Robustness: DSInteractive Mass-Testing 174

Usability Features 176

B

6

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

Stakeholder-Testing Meeting 177

In the Language Specification 177

Operators 177

Keywords 177

In the Implementations 178

Windows IDE 178

Other Implementations 179

AcceptButtons 179

Standalone Expression Evaluation 180

Help Window 180

How the Implementations work together 182

Future Additions: Stakeholder-Suggested Usability Improvements 183

Future Additions: Personal Ideas 184

Testing Tables & Success Criteria 185

Testing Checklist (Interpreter DLL) 185

Extended Testing Evidence 186

Future Maintenance 187

Limitations – Or were they? 188

Conclusion 189

Stakeholder Comments 189

Where's All the Code? 189

Appendix 190

Abbreviations 190

Notation 190

References 190

B

7

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

Introduction
Hello, World!
This 187-page file documents the development of the DocScript Programming Language.

It was written over the course of 12 months, and covers the planning, implementation, and testing

of the entire solution. Over 80,000 lines of computer code are written for the project, and they –

along with other development logs, resources, and final binaries – can be found here:

• My final Programming-Project folder for OCR: Click Here

• DocScript, on my website: Click Here

• DocScript, on //GitHub: Click Here

DocScript in 3 Minutes
Readers of this document may wish to brace themselves, by firstly watching the following video. This

was produced towards the end of the project, but nevertheless aids in elucidating the structure of

what is – admittedly – rather a large codebase…

(https://youtu.be/ybl5pVSJOOk)

https://1drv.ms/f/s!AlUs85FIEgtQhyGQU7_XiKvl4XGS?e=Qh9toK
http://benm.eu5.org/
https://github.com/BenMullan/DocScript/
https://youtu.be/ybl5pVSJOOk
https://youtu.be/ybl5pVSJOOk

B

8

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

Analysis
Problem Identification
At present, one is hard-pressed to find an easy-to-use Programming Language built from the ground-

up to handle computational numerical logic, including working with numbers in a variety of different

bases and formats, along with specialist Computer Science operators and mathematical functions, all

in the same package. Certain existing systems which go some of the way towards permitting the

programmer to use a select few number bases and mathematical operations, are inflexible, and do

not function across an adequate variety of different types of computer systems, due – in many cases

– to the increasingly diverse range of CPU architectures and Operating Systems used today.

Even – for instance – whilst my class and I were learning about some of the different number bases

frequently used in Computer Science earlier this year, we hadn’t a toolset to use for the purposes of

exploring and testing concepts, or validating answers to questions, e.g. for homework tasks. An

environment wherein such experimentation and evaluation could occur, would be invaluable not

only to students of CS, but potentially other disciplines too.

I will therefore be creating a new Programming Language from scratch, to solve these problems.

This involves:

• Designing a programming language SPECIFICATION (for the syntax, keywords, etc…)

• Implementing that specification into a RUNTIME "translator", to enable source code

written in accordance with the specification, to be understood and executed

There are many areas of Computer Science which require simple to complex mathematical

processes, including – but by no means limited to – the manipulation of numbers in different bases

and formats (such as fixed- and floating-point representations), hashing, encryption, and

compression principles, bitwise operations, and IP Address-related calculations, just to name a few!

During the forthcoming stages of §Analysis, I shall be delineating precisely which features are the

most important to the stakeholders of the product, by asking these stakeholders themselves.

But in addition to dedicated A-Level CS maths features, the language will need to implement a basic

range of commonplace procedural programming constructs, and be Turing-complete. Of particular

importance to the solution, is the fact that it ought to run on a range of different types of computer

system, as used by the stakeholders in question.

Stakeholders
Conveniently, the primary stakeholders herefor consist predominantly of students studying GCSE

and A-Level Computer Science or Maths. These clients are pupils between the ages of 16 and 19,

with varying levels of experience in informatics and mathematics. This is an important factor for the

project, because it is vital that I collect and analyse the viewpoints of a heterogeneous selection of

stakeholders, due to the different observations they will make on account of their different

backgrounds.

B

9

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

Stakeholder Relevance to Project Intended Use-Case

Oliver

• Has been programming for a number of
years in a hobbyist context (C++)

• Studies A-Level Mathematics

• In same school

Experimentation with number
bases, and concept testing for
maths, as well as having a
general-purpose Scripting
Language

Kiran

• Inexperienced programmer – therefore
knows what’s hard to learn about existing
languages, and what can be improved in
the product I am developing

• In same school, and representative of the
wider target group for whom this product
is intended

Potentially for learning and
reinforcing some mathematical
and programming concepts,
and also for use of a general-
purpose Programming
Language

The proposed solution is appropriate to the needs of these stakeholders, as it is to be a simple and

easily-learned environment, which the clients can therefore use for experimentational purposes

without first having to spend a considerable amount of time familiarising themselves with.

In addition – however – to these primary stakeholders, I must consider some of the wider

stakeholders who should influence the development of this system. To this end, I have identified the

following external clients.

Stakeholder Relevance to Project Intended Use-Case

Joe

• Takes GCSE Computer Science

• Uses basic scripting to automate tasks on
his personal computer

• Attends a different school

Some light administrative
scripting, but also for learning
various CS Programming and
Maths concepts

Klara

• Experienced professional software
developer

• Uses, and is familiar with, a variety of
mainstream Compiled and Interpreted
Programming Languages

• Is incidentally German, but I will translate
the questions and responses into English
for the interviews

For testing and
experimentational purposes
related to other products she is
developing, as well as
educational purposes

The proposed solution is appropriate to the needs of these stakeholders, as the software will aim to

reinforce programming principles seen in more sophisticated higher-level languages. As befits users

of smaller and simpler programming systems, they will one day wish to progress onto more

advanced languages. The software being developed herein aims to provide this sort of educational

basis. A particular focus will also be placed on how the user interacts with the language. Though I

must further investigate exactly how these clients wish to be able to interact with the system, I have

a few ideas presently about – for instance – not having to enter an entire program just to get some

output from the language. This sort of feature would be suited to these clients who may often not

need to write a complete program, but rather, a short expression or statement, for their

experimentational and pedagogic resolves.

B

10

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

This range of stakeholders means that I will be targeting the following areas during the development

of the software:

• Hobbyist and Experimentational Use (Oliver and Kiran)

• Educational Use (Klara, Kiran, and Joe)

Why this problem is suited to a Computational Solution
Let us imagine the following example scenario, as a use-case for the software: A user wishes list the

prime numbers below 100, in each base from 2 (binary) to 32 (Duotrigesimal). Indeed, attempting to

perform this inherently systematic and sequential task on anything but a computer, might, in this

day and age, be considered preposterous.

Creating a Programming Language, therefore, to facilitate the computation of such problems, does

fundamentally lend itself to a computational solution as computers provide an untiring, consistent,

accurate, and scalable platform on which to build this software. In other words, there is no viable

way to create such a system, if it does not rely on a computer to at least some extent.

In this instance, it rather makes sense for the entirety of the solution to be computer-based. Data

can be easily stored on a computer, entered into the system (or by other means retrieved by the

programming language), and thereafter be stored back on the computer for further manipulation,

potentially in other programs. Such is the characteristically inter-compatible nature of data in

standardised formats when kept on a computer. Having to manage, move, and manipulate all this

data by hand, would be laborious at best, and – at worst – impossible.

Simply put, the Programming Language will need to take in some source code, analyse and validate

it, and then execute the instructions given. Each of these three basic stages is best-suited to being

carried out by a computer, not least because the user will expect their programs to be run in a fast

and consistent and idempotent manner.

Specific Computational Principles Employed

Problem Recognition and Decomposition

Ostensibly, the overall problem is attempting to execute the instructions provided by a user,

on their computer. However, the computational principles of problem recognition and

decomposition allow us to identify a series of underlying sub-problems; the instructions

must be syntactically and logically validated, comprehended by the computer, checked for

irregularities, and finally, performed. Whilst it initially seems that executing the instructions

themselves is the most complex and significant of these problems, it quickly becomes clear

that in reality, the comprehension of the source code (initially just a long string) is the more

mammoth undertaking. On the outset, I anticipate that breaking down the input source

code will consist some of the following steps:

• Performing preliminary validation to ensure that no unexpected characters have

been used in the source as a whole

• Disregarding comments, which needn’t be executed

• Parsing the source, to derive a set of tokens from the keywords, identifiers, and

literals of the language

B

11

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

• Lexically analysing the tokens and forming a tree of semantically-significant symbols

• Attesting that the order of these symbols is valid for the subsequent stages

When this is overcome, the remainder of the problem actually seems comparably simple;

once the computer understands what to do, doing it is simply a matter of applying the

instructions to a scenario, such as performing them as actions. However, the parsed input

could – for instance – just as easily be used as the source for a translation program for

natural languages, e.g. from English to German. Decomposition has hereby permitted us to

recognise the compartmentalised and modular nature of this larger problem.

Incidentally, in this particular project there is the additional step of creating a formal

(meaning “concise” and “unambiguous”) specification for the programming language itself,

often referred to as a “LangSpec”. This is a separate problem to designing whatever it is that

will actually interpret and execute the language’s source code. Both problems, however, are

amenable to decomposition.

Pattern Recognition

Recognising patterns is a fundament of interpreting source code. It is impossible to account

for every possibility of input by hard-coding in the output, wherefore identifying a

predefined pattern in the input is significantly more effective and flexible. In particular, I

envisage using Regular Expressions to validate and find certain syntactical forms in the

source. A Regular Expression is like a template for some text; it can be satisfied only by an

instance of text which precisely matches the pattern specified in the RegEx. The RegEx

“^\d{3}\-2$” – for instance – is satisfied by the string “974-2”. Since getting a computer to

comprehend and execute the instructions of a programming language involves a large

amount of pattern recognition, this sub-problem pertains to a computational approach.

Automation

Characteristically, a medium- to high-level programming language facilitates the automation

of many tasks requested by the programmer. In fact, having a system to run the language for

you, constitutes automation; no manual overseeing of the execution is necessary.

In addition, a number of automation principles will be used during the development of the

software. For instance, the IDE will automatically {Check Syntax, Resolve Dependencies,

Compile, and Link the Project} on the press of [F5]. Hence, automation can speed up both

the development and the execution of the system being developed here.

Divide and Conquer

The “divide and conquer” principle manifests itself in this project through the fact that

several smaller problems were derived from the initial proposal. When viewed in an

individual context, each smaller problem is very much manageable and can be conquered,

before moving onto the next one.

In addition, the principle of Multithreading is a manifestation of “Divide and Conquer”; a

substantial process can be divided into a number of sub-processes which can each be

executed on their own CPU. Because many modern computer systems have multiple logical

B

12

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

and physical CPUs or Cores, this multithreading can be an effective means of conquering a

conventionally time-consuming computational task in a vastly-reduced time.

Abstraction

Considering the target stakeholders for whom this software is ultimately being designed, a

large amount of abstraction will have to be employed in order to make the system easy to

use and accessible. Naturally, many programming languages implement a wide range of

abstractive features, from predefined functions and libraries, to providing object-orientated

features to the programmer. The user needn’t list hundreds of assembly instructions with

their operands, or enumerate each of the Win32 API calls involved in a relatively simple

procedure such as outputting text. Instead, this sort of process is usually outsourced to a

singular inbuilt function or keyword, such as Write() or Print() . I will be interviewing

stakeholders shortly to determine how exactly layers of abstraction should be implemented

into the product.

In addition to abstracting complex processes into simple keywords in the language itself, the

principle will also have to be used in the inner workings of the execution engine. Whilst the

source code is liable to contain a large amount of information useful to the programmer, not

all of this is of relevance when it comes to running the program. Comments, for instance,

along with auxiliary whitespace and any programmer-specific syntactical layouts, are

amongst the first elements to be ignored during the parsing. This is a form of abstraction;

simplifying, and only paying attention to the most important components.

Primarily though, the purpose of the software being written here is to take some input, and

produce an output based on it. Therefore, during the Design phases of the development, I

will be placing a particular focus on this abstracted view of [Input ➜ Proceß ➜ Output].

Interviews and Analysis Thereof
In order to effectively identify the features most sought by the stakeholders, and find out what

should be avoided, I shall be undertaking a series of interviews with the clients.

Questions

The first stage in this process is to devise a set of questions to ask. These

questions need to establish specific pieces of data which I can use to

design the product, and they also need to make sure that I understand the

needs of the Stakeholders.

All Stakeholders

The following questions are for applicable to all of the stakeholders

1) Which areas of maths do you find yourself referring to most frequently, whilst

programming?

2) Which computer system(s) do you currently use (a) whilst programming, and (b)

recreationally? What are the architectures and operating systems of these computers?

B

13

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

3) Which components of existing programming languages or systems do you find annoying or

cumbersome?

4) Which components or features of existing programming languages do you like and find

useful?

5) …And what, therefore, would you perhaps like to see implemented in this system, to aid in

its ease of use and functionality?

Hobbyist Use

The following additional questions are for the stakeholders involved in the hobbyist use area

(represented by Oliver and Kiran)

6) How frequently do you use programming languages for your own personal

experimentational and hobbyist purposes?

7) Where do you think a reasonable line can be drawn between hindering simplicity and

needless complexity, in the context of a programming language?

8) Is there a particular style of programming (paradigm, nomenclature, or simply a set of

tendencies) that you lean towards, for experimentation?

9) Are you satisfied by the programming toolset currently at your disposal?

Educational Use

The following additional questions are for the stakeholders involved in the educational use area

(represented by Kiran, Joe, and Klara)

6) In your experience, what do you think makes some existing programming languages hard to

learn?

7) How do you interact with the Programming Languages you already use?

8) What, if anything, do you find cumbersome about this, and how might you more ideally wish

to use a programming language system?

9) What do you think some of the most important principles of higher-level programming

languages are, that need to be learnt in order for students to progress onto systems

requiring a deeper level of understanding?

Questions’ Explanation and Justification

I have used a mixture of open and closed questions as appropriate, in an effort to evoke both

specific responses, as well as broader and more substantial answers including detail I may not have

considered thitherto.

• Question 1 aims to establish which mathematical utilities the programming language ought

to have. This is important, as the primary point of specialisation for the language is its use as

a mathematical experimentation and utility environment.

• Question 2 should enable me to determine which operating systems and computer types I

need to support. This data contributes directly to some of the Hardware and Software

Requirements of the product.

• Questions 3 and 4, and 5 investigate the problems and useful features of existing languages.

The responses to this question will be very significant to the further development of the

software, in terms of which components I should aim to implement.

B

14

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

• From question 6H (Hobbyist Use Questions), I should be able to delineate what design

choices need to be made, in order to make the product suitable for use at the frequency

specified by the clients.

• Question 7H, is being asked to get the clients’ views on another rather important principle

of the development of the system; a balance must be met between an excessive level of

simplicity – whereby the language would be difficult to use – and a superfluous level of

complexity – whereby the language would be equally difficult to use, and indeed, learn.

• Question 8H aims to establish whether or not a particular style of programming (paradigm,

nomenclature, or simply a set of tendencies) might be best-suited to the experimentational

uses for which the product is intended.

• Question 9H identifies whether or not the client is content with their current programming

toolset. It is a closed question (yes/no) and serves only to corroborate the previous

responses.

• Question 6E (Educational Use Questions) attempts to discover what it is about some of the

existing products that makes them difficult for beginners to learn. This information is useful

as I should aim to avoid implementing these features myself.

• Questions 7E and 8E enquire about the manner by which the clients currently interact with

their programming languages. This is an interesting part of the overall problem, and affects

the accessibility and ease of use of the system too.

• Question 9E is an important one to ask, on the basis that the "educational use" clients are

either looking to learn important programming concepts for themselves, or they will be

teaching these concepts to others through the use of the programming language. It is

therefore vital to establish which principles in particular ought to be prominent and well-

implemented into the system.

I shall now ask the stakeholders each of these questions, and record their responses. During the

interviews however, I may end up asking additional follow-up questions or requesting that a

stakeholder substantiate one of their responses.

Responses

I conducted face-to-face interviews with Oliver and Kiran, whereas Joe was

interviewed by Email, and I spoke to Klara over the phone in German,

translating her responses into English for the purposes of this document. These,

are the abridged findings…

1) Which areas of maths do you find yourself referring to most frequently, whilst programming?

• Just wanting to evaluate basic mathematical Expressions [2]

• Straightforward Boolean Logic (Kiran)

• Finding information from statistics; Mean, Mode, Median, Range etc. (Kiran)

• Geometry (Kiran)

• Manipulating Numbers in different Bases, and converting between them (Oliver)

• Bitwise Operations (Klara)

B

15

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

2) Which computer system(s) do you currently use (a) whilst programming, and (b) recreationally?

What are the architectures and operating systems of these computers?

• An x86-Based IBM PC-Compatible Windows Computer [3]

• …Some of the stakeholders mentioned that their desktop computers are very powerful,

with multiple logical processors, and even graphics coprocessors for “C.A.D. or video

games”. The versions of Windows NT ranged from XP to 10.

• An iPad or Tablet, iOS and Android (Recreational). Kiran commented that he often uses

his iPad because it is “portable, quick, and easy to get out and use”.

• (Occasionally) A SmartPhone Handset (Recreational) (Kiran)

• Enterprise Servers, running Windows Server. “KVM (Keyboard, Video, & Mouse) Console

Access to the Server isn’t always guaranteed, and we might only have a Command-Line

Interface with the machine. The software might need to be able to handle this.” (Klara)

3) Which components of existing programming languages or systems do you find annoying or

cumbersome?

• Complex ways to perform ostensibly simple tasks. [2] Oliver mentioned the complexity

of using iostreams and put-to operators in C++, just to output text to the console. Kiran

mentioned the difficulty of navigating modern versions of Visual Studio, due to the large

number of different windows and controls.

• Programs are often difficult to Debug; there is no clear trace of actions taken. (Oliver)

• The language being “pedantic” (Kiran) about small details which shouldn’t have to make

a difference, such as capital letters mattering for variable names.

4) Which components or features of existing programming languages do you like and find useful?

• Simplicity [2] and the organisation or encapsulation of parts of the source code (Klara)

• Some advanced high-level features such as (1) Immutability and (2) Lambda Expressions.

These can help me to write safe and concise code. (Oliver)

• Something that allows the creation of elegant and even beautiful programs (Joe)

• Having lots of built-in libraries and functions “to do things for me” (Kiran)

5) …And what, therefore, would you perhaps like to see implemented in this system, to aid in its

ease of use and functionality?

• “Potentially the ability to sub-divide the source code up into manageable blocks of some

sort. Functions or even Namespaces would be a good idea, if a little challenging to

implement“ (Klara)

• A reasonable number of inbuilt functions and utility methods [2]

• Standardised and well-known procedural programming statements, which appear in

other languages too. In this way, users of the language will “become familiar with

common practice, easing their transition to other systems when they feel ready”. (Kiran)

• Potentially some integrated help, if there are any more complex components in need of

explanation.

B

16

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

6H) How frequently do you use programming languages for your own personal experimentational

and hobbyist purposes?

• Quite frequently [3]

• Occasionally [1]

7H) Where do you think a reasonable line can be drawn between hindering simplicity and needless

complexity, in the context of a programming language?

• “I think it’s all about the structure of the system; if users can clearly see what to do,

where they should enter text, or which button they should press, then there is no

problem. Things tend to become needlessly complicated only when there is a poor

system of organisation” (Oliver)

• Having an overly-large feature set can be too complex [2]

• Having consistency is important for the user experience [2]

8H) Is there a particular style of programming [paradigm, nomenclature, or simply a set of

tendencies] that you lean towards, for experimentation?

• “I tend to want something quite high-level, with lots of pre-built functions available to

me, so that I don’t have to reinvent the wheel when it comes to doing something

simple” (Oliver)

• “I don’t like having to worry about small details when programming for

experimentation” (Kiran)

• “I often find myself using an almost functional programming style, focused around

expressions instead of statements” (Klara)

• “Choosing suitable names for the variables and other identifiers is often difficult,

because you might not have fully conceptualised that that variable is actually for yet”

(Joe)

9H) Are you satisfied by the programming toolset currently at your disposal?

• No [2]

• Yes [2]

6E) In your experience, what do you think makes some existing programming languages hard to

learn?

• The existence of ambiguities to those who don’t know the relevant rules. [3] Operator

Precedence (order) and Associativity (right or left side resolved first) was mentioned by

Klara. E.g. In “5 + 3 * 8 / 2 / 5”, how does a beginner know whether the specific language

will execute the multiplication, addition, or division first – and even if they know that,

which of the two instances of the division operator would be evaluated first?

• The lack of important concepts being enforced at the basic level [3] E.g. “Python”

doesn’t make the user specify the DataType of a variable at its declaration. In fact, it

doesn’t even have a keyword for declaring variables. This makes the script very hard to

follow. (Oliver)

B

17

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

• The specific syntactical and grammar rules [2]

7E) How do you interact with the Programming Languages you already use?

• With a Keyboard and Mouse [4]

• With Mouse via drag-and-drop blocks (Joe)

• I have to open an IDE (VS) and type the source into a file [2]

• “Sometimes I use the mshta.exe or cscript.exe to interpret VBScript and Jscript straight

away, without having to create a project or anything first.” (Kiran)

8E) What, if anything, do you find cumbersome about this, and how might you more ideally wish

to use a programming language system?

• Example: “To experiment with some C++ I may have been thinking about, I have to open

Visual Studio, create a new Project, type the source into the file, which I then have to

save, before finally being able to run the script, only to be informed about a missing dll

and having to start all over again. It would be nice to be able to simplify this process, but

in the case of CPP, I think it’s really just a fundamental limit of the language” (Oliver)

• Example: JavaScript’s expression-based Console in Chrome facilitates the immediate

evaluation of expressions and function calls. This is very useful for quick testing and

experimentation. (Klara)

• I want a more direct way of getting the ideas in my head into code form. [2]

9E) What do you think some of the most important principles of higher-level programming

languages are, that need to be learnt in order for students to progress onto systems requiring a

deeper level of understanding?

• DataTypes [2]

• OS-Interaction; Exit Codes and Command-Line Arguments (Klara)

• Debugging principles; “getting a lower-level view at the high-level script you’ve written”

(Oliver)

• Condition- and count-controlled loops [3], If statements [2], and Variable Declaration

and Definition Clauses [2]

Analysing the Responses

Carrying out the interviews made it clear that, for the most part, the stakeholders’

requirements for the application are actually not that complex or sophisticated.

“Just wanting to evaluate basic mathematical expressions”, for instance, was one

of the key points from question 1. Stakeholders said that they just needed to be

able to type in a quick mathematical statement (E.g. “400 – (80 * 6)”) to work something

out for the program they are currently writing. In other words, the stakeholders want to be able to

use the programming language being developed here both as an assistive tool (for use whilst

working with another programming system), and indeed as a stand-alone development environment

for quick experimentation-style programs, and scripting tasks.

B

18

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

Several questions’ responses seemed to indicate come common trends. For instance:

• The different mathematical use cases, along with the comments about “simplicity coming

through organisation”, suggest that it might be a good idea to have a system of modularity and

classification in the programming language. Different components could be encapsulated into

their own “boxes”, making them easier to find and use.

• The clients mentioned wanting to have a number of predefined functions at their disposal,

several times throughout the interview. This is important because it extends the functionality of

the programming language, and facilitates the quick and experimentational style desired by the

stakeholders, as mentioned in questions 8H and 5.

• The research into the varieties of computer currently used by the clients (and which they

therefore would use the programming language on) suggests that a fairly wide variety of devices

must be supported, including different operating systems and CPU Architectures (or indeed,

Instruction Sets). These are MS Windows NT versions XP to 10 (KVM/GUI and 80-Column CLI),

Apple iOS, Google Android, and both x86 and ARM Processors.

• The allegedly cumbersome ways of performing simple tasks in other programming languages will

need to be abstracted with a layer of simplicity in this language. For instance, Input and Output

functions could be built-in keywords or methods. The stakeholders also reported that they feel

other languages can be needlessly “picky” or “pedantic” with features such as case-sensitivity

(Kiran), operator associativity (Klara), and difficult debugging processes (Oliver)

• The reported frequency of use for the system (with 75% saying that they would use the language

“quite frequently” (6H)) means that it will need to have a way to save any configuration and

settings the user has applied, ready for the next use.

• Consistency and a structured organisation are a significant principle sought by the clients, as this

aids in the ease of use, and extensibility of the system (the extent to which it can be extended,

and interoperate with other programs).

• The stakeholders commented both on the fact that “Having an overly-large feature set can be

too complex” and unwieldy, but at the same time, that “Having lots of built-in libraries and

functions” is useful and improves the speed of development, wherefore I will have to strike a

balance therebetween.

• The main factors affecting the ease of learning new programming languages (something a client

of this system would inevitably have to do) seemed to be a lack of syntactical, grammatical,

semantic, and conceptual consistency in some languages, and confusion about fundamental

concepts, often because they are not enforced at a basic level. DataTypes in Python (or the lack

thereof) was provided as an example. Operator Precedence and Associativity also seemed to

cause confusion on occasion.

• Unsurprisingly, the clients reported interacting with the programming languages they used, by

Keyboard and Mouse. They showed no real objection with this method, and acknowledged that

it would be appropriate for the system being development here too.

• Use of IDEs was also mentioned, and it was said that having to open one up and setup a new

project, just to write some code can be unnecessarily indirect, but that they do enable a feature-

rich development experience, which would be hard to achieve otherwise. Having some sort of

basic IDE – wherein the programmer can both write, execute, and debug their scripts – would be

suitable for this programming language.

B

19

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

• In addition to this, however, it would be beneficial, according the stakeholder feedback, to have

a more flexible, dynamic, and immediate method of executing or evaluating expressions or

statements. This correlates with the comments made for the very first question concerning

mathematical expression calculation being amongst the most sought features of the product.

• Finally, in order to better prepare educational users of the language for move advanced systems,

it was established that the use of several fundamental principles had to be enforced in the

language. These, the stakeholders reported, include DataTypes, Process Exit Codes, Command-

Line Arguments, Debugging Principles, and standard procedural programming statements

(Loops, If Statements, Variable Declarations and Definitions).

I acknowledge that there is a certain level of irony in the fact that I will be using a Programming

Language inside of an IDE, to develop another Programming Language and IDE. This, however,

makes it all-the-more entertaining.

B

20

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

Existing Similar Products

1) Chrome’s JavaScript Console

Since one of the interviewees mentioned this product as a system they currently use for

experimentational programming, I have decided to take a closer look at it here.

Noteworthy Features

• The console is quickly accessible from within the browser; the user need only press “F12” to

open the window whenever desired.

• Aside from being able to input meaningful, executable statements of JavaScript such as var

Age = 5; or if (IsOldEnough) { AllowEntry(); } , the console also permits the

programmer to simply enter an expression, and have it immediately resolved, based on

whichever variables and functions are accessible in the current execution context. Several

examples hereof can be seen in the screenshot of the product below.

[Above] The DevTools JavaScript Console

• Different parts of logic in JavaScript can be subdivided into different encapsulate units. For

instance, Functions are supported both as conventional named methods, and as first-class

objects for use with lambda expressions. This allows a series of instructions to be run

sequentially, just by invoking the function. JavaScript additionally supports its own object

mark-up format called JSON (JavaScript Object Notation), which further permits the

programmer to neatly organise different data. E.g. { GetName : function () { return

`Ben`; } , Age : 17} .

B

21

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

• Google Chrome (which comes with this DevTools Console software) is available for almost all

operating systems, though the company is becoming increasingly selective about supporting

“older” operating systems such as Windows XP.

• The User Interface, though excessively modern, is largely comprehensible and clearly laid-

out. Syntax Highlighting also aids in the readability and discernibility of the source code.

Limitations

• One problem with the system – just due to what it’s actually intended for – is the inability to

save and open script files of one’s own (with any sort of ease).

• It also can’t be used on all of the computer types the stakeholders mentioned; there is no

Command-Line version, and Google Chrome does not include the DevTools Console on other

devices such as iPads or Android phones.

Components Applicable to My Product

• The ability to evaluate standalone expressions (This appeals to the stakeholders’ requests

for a system that can be used for quick and easy experimentation)

• The almost instant accessibility of the console (This aids in making the product good for

carrying out quick tests during one’s own program writing)

• The relatively clear user interface, with its menus and syntax highlighting

2) BaseConverter / BasedNumber Finder

This program’s main feature is being able to compute tables of numbers in different bases. It doesn’t

have any sort of integrated programming language, but provides some of the mathematical

capabilities the stakeholders are looking for.

Noteworthy Features

• Can easily convert numbers from most standard bases into other bases

• Has Complements Finder Built-in

• Includes several Colour-Formatting Algorithms to graphically visualise the results of a

BasedNumber-Finding Query

[Below] The Main Window with the Fill dialog open

B

22

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

[Below] Additional Program Features: The BasedNumber Finder, and Complements Finder

Limitations

• There is no extensibility with the system; only the functionality hard-coded into it can be

run.

• The current version of the Program only runs on Windows (over .NET).

Components Applicable to My Product

• The mathematical features of converting between numbers of different positional notation

(place value) bases.

• The clear User Interface with the MenuStrip at the top.

• The fact that the program is just a singular exe file; it needn’t be installed with a setup utility.

3) CScript.exe / WScript.exe

Microsoft Windows includes a few built-in script interpreters for different languages, including

Batch, PowerShell, VBScript, and JScript. One of the clients mentioned that they use mshta.exe and

cscript.exe to run these sorts of scripts quickly and easily, so that they don’t have to create entire

projects for a quick experimentational test. Therefore, I will take a closer look at these interpreters

here. Incidentally, “wscript.exe” is the Windows Script Host (WSH) component for running scripts

using graphical input and output, whereas “cscript.exe” is for running the same scripts in a

command-line environment.

[Below] “Hello.VBS” open in a Text Editor

[Below] Using “wscript.exe” to execute the Script File

B

23

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

Noteworthy Features

• Can easily be used run saved script files in either a windowed or command-line

environment.

• Is widely-available because it comes with the Operating System.

• Is extensible, as it even works with multiple programming languages (VBScript & JScript).

Limitations

• The script files must first be created and saved to disk before they can be run. This can be

annoying if the user wants very quick access for testing a line of code.

• Despite working on all versions of windows, it does not exist for other operating systems

such as iOS and Android.

• There is no convenient and integrated way to edit the scripts. One has to use another

program to accomplish this task.

Components Applicable to My Product

• Different components to execute scripts in different environments including both GDI-

enabled and Command-Line situations.

• Interoperability with standardised operating system mechanisms.

4) Visual Studio

Microsoft Visual Studio is an industry-standard IDE used worldwide by millions of software

developers. It too was mentioned several times throughout the interviews, and as such, I shall

evaluate some of its features and functionality.

B

24

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

[Above] The Main Window with the Start Page open

Noteworthy Features

• Advanced debugging features including: Realtime Memory contents and Variables view,

Output Window, Errors List, Remote Debugging Server, .NET Exception Handling, and JIT-

Debugging

• Highly-customisable and versatile

• Helpful Syntax Highlighting and Keyboard shortcuts

• Well-designed, clear user interface, including identifiable coloured icons, and buttons with

self-evident functions.

[Below] Visual Studio’s Syntax Highlighting

Limitations

• The software only runs on x86-based Windows (or – ostensibly – Macintosh) computers as a

full desktop application with the GUI. At least two of the stakeholders commented that they

B

25

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

may need to be able to use [the solution being developed herein] in a remote command-

line, or mobile environment.

• Arguably, although Visual Studio provides an indispensable toolset for any programmer once

understood, it can be challenging for a beginner to get to grips with.

Components Applicable to My Product

• Clearly, whatever product I end up producing will not be comparable in its feature-set to the

likes of Visual Studio; the scales of the two products are not even on the same order of

magnitude, and I am not a professional team of 500 full-time developers.

• However, an appropriate approach for this project is to realise that many developers (and

therefore stakeholders in this product) will be accustomed to programs such as Visual

Studio, and that the product being developed, should not – therefore – differ so wildly from

this as to be unfamiliar and hard-to-use.

Features of the Proposed Solution
The core component to be developed is an engine of execution for a Programming Language. A

carefully-considered set of rules concerning syntax, grammar, and structure will be created as a

formal specification for the programming language. The core “engine” component will need to be

able to take in some source code – compliant with this specification – and execute it.

This engine will then need to be implemented into a number of different execution environments –

namely, an IDE-resembling windows program with a GUI, a command-line script runner, and a web-

based console for entering and running code on, for – importantly – any device with a web browser.

Only this segmented and hierarchical architecture can facilitate the use of the language on all the

platforms sought by the clients. The system will also include a range of specialist inbuilt

mathematical features, which, as a result of having conducted the interviews, can be delineated

(mostly) as the following:

• Evaluating standard mathematical expressions (e.g. “5 + 2 * 9”)

• Working with numbers in different bases

• Boolean Logic operations

The research has also made it clear that the following programming features ought to be

implemented into the language:

• Data Types for Variables

• Functions, to facilitate the encapsulation of logical executable sections

• Commonplace procedural constructs including While and If statements

B

26

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

• OS Interoperability (Command-line Arguments, and Process Exit-Codes)

• Predefined functions for common tasks

These features have been chosen because the stakeholders placed an emphasis on desiring

simplicity in the system. One way in which this is achieved is with structure and organisation,

wherefore Functions and block-style statements (including [While] and [If]) will be features of the

language.

Features to facilitate “Experimentational Programming” are important in this product because this is

one of the primary use cases of it, along with its use in an educational capacity. For this reason, the

[built-in mathematical functions] and [predefined functions for common tasks] are on the list above

too.

Limitations of the Proposed Solution
Owing to the amount of time at my disposal to create this programming language, the main

limitation is likely to be the breath of the solution. (E.g.) How many built-in functions will be

available? Will there be additional encapsulative features such as namespaces? How many complex

operators can be used for the mathematical expressions? Nevertheless, the requirements listed in

the subsequent sections take into account the feature-set of an MVP (Minimal Viable Product),

which still meets the stakeholders’ needs and is founded on the research conducted.

Another limitation is likely to be an intrinsic level of some complexity in the system, despite the

requirement that it be simple. This is because any worthwhile programming language must be

sufficiently complex as to enable the programmer to develop at a reasonable pace, once familiar

with the system. At the same time, this language has the paramount requirement that it be simple

to use and learn. The compromises involved in meeting a balance herebetween are likely, therefore,

to constitute a limitation of the product.

Having to interact with the programming language in a conventional, predominantly keyboard-based

fashion (which was agreed upon by the stakeholders to be suitable) does of course mean that

people with certain disabilities, which make it difficult for them to type, may be unable to make full

use of the software. This problem does not, however, directly affect any of the stakeholders to

whom I have hitherto spoken.

Since I have not implemented any complex expression parsing in my programming before, this is

something I shall have to learn much more about. I have some initial ideas about how this can be

done with infix to postfix conversion, and stack-based execution, but the complexity of expressions

supported in the language will be to some extent dependant on my ability to write an expression

parser and evaluator of sufficient complexity, dealing with such difficulties such operator

overloading, precedence, and associativity, as well as brackets, unary operators, and embedded

function calls.

There may also be some security concerns with the language’s runtime engine; since it is a system of

such complexity, and because there are a very large number of edge cases and unaccounted-for

pieces of input, certain scripts may potentially cause insecure behaviour such as buffer overflows or

injection. However, since the system will run on top of .NET (clarified just below), for there to be any

B

27

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

serious vulnerability permitting system-wide damage, a vulnerability would need to exist in .NET

itself: something which is seldom discovered, and rapidly patched.

Hardware and Software Requirements

I have settled on using the .NET framework to build

this project. There are many programming

languages which can be used with this framework,

but I will predominantly – if not exclusively – be

using Visual B.A.S.I.C. .NET.

This decision affects the software requirements for components of the proposed solution, inasmuch

as only x86-Based Windows NT computers will be able to host the “engine”, but it still means that

the stakeholders who sometimes use mobile devices will be able to load the interactive Webpage as

a means of accessing the Programming Language.

Hardware

• For the two Windows Implementations: an x86-Based [IBM PC]-Compatible ACPI

Computer, with standard HID peripherals including a Keyboard, optionally a Mouse, and

a Monitor.

• The .NET Framework (v4) also requires that the computer have at least a 1GHz

Processor, 512MB of Memory, and 5GB of free Disk Space.

• The Web Client only requires that the computer is capable of running a standard

(modern) Web Browser, such as Google Chrome v80+.

Software

• The aforementioned computer running, or being able to run, a version of Microsoft

Windows NT, versions XP to 7, with the .NET Framework, version 4.0 or higher,

installed.

• The Web Client will simply require a (Modern) Web Browser to be installed onto the

computer, supporting client-side scripts, and AJAX. Specifically: HTML5, CSS3, and

ECMA6.

Stakeholder Requirements

Further Meeting with the Stakeholders

I sent this Email to the stakeholders, to get them up-to-speed

with some of the developments which have occurred since the

interviews. I was also able to speak individually with two of the

four primary users.

Dear Stakeholders,

I have been analysing the feedback form the interviews we conducted, and have worked out

what some of the features of the end product will be:

B

28

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

• An implementation of the Programming Language Runtime for both Windows

GUI, Windows CLI, and Web-Based clients

• A basic IDE with text-editing and script-executing abilities

• Built-in mathematical functions for based numbers, expressions, and Boolean

logic

• Standard procedural features including While and If Statements

• DataTypes for variables

• Functions, for encapsulating logic into sections

The Runtime (“engine”) for the language will be able to run only on x86 Windows over .NET,

but the inclusion of the Web Client will enable a version of the language to run on any

computer with a Web Browser, including of course the mobile devices you mentioned in the

interviews.

Ben

The stakeholders were pleased to hear about this progress, and had no objections to the features

listed. Their requirements for the product are therefore as follows…

Requirements for the Programming Language

Requirement Explanation & Justification

An easy-to-use and learn programming
language, suitable for pedagogical use

To meet the needs of the clients, and be of any
real value at all, the system must be relatively
easy to use and pick up. This also aids in making
the product useful as an educational tool.

Implements the requested specialist
mathematical features; BasedNumber
manipulation, Boolean Logic, Mathematical
Expression Evaluation

The primary point of specialisation for the
language is its integrated mathematical abilities

The concept of DataTypes is enforced This concept is a significant idea for anybody
learning computer programming, and since two
of the stakeholders represent the product’s use
in an educational capacity, this feature is
important

Allows the programmer to use standardised,
commonplace procedural programming
constructs including While and If Statements

This is important both for the educational use
cases, and the experimentational ones.
Experimentation can occur more easily when the
user is already familiar with some of the features
of the language, in this case because these same

B

29

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

features are implemented by many other
programming languages.

Enables the programmer to evaluate singular
expressions without having to run an entire
program

Such functionality would permit the user to
program in the desired "experimentational"
manner

Permits the programmer to divide programs up
into more manageable and organisable sections,
E.g. via Functions

The clients said that one way in which simplicity
(another requirement) can be achieved, is
through organisation and structure

The language is able to interoperate and
communicate with the operating system, E.g. via
Command-Line Arguments, and Process Exit
Codes

This concept is another one which assists
newcomers to programming, teaching a useful
and important OS mechanism

There are some useful pre-defined functions for
common tasks

This facilitates the experimentational
programming style, as well as making it easier
for any learners to more quickly write a program
to accomplish the task in question

Requirements for the Implementations

Requirement Explanation & Justification

Runs under different OS environments and
computer types

The stakeholders reported using several
different computer types in the interview. The
system will need to support these.

[Windows GUI] Has a familiar, simple,
unconvoluted, User Interface with helpful icons,
and buttons with self-evident functions.

This contributes to making the software easy to
use, and organised

Some documentation and instructions
concerning use of the language. This is applicable
to all implementations, though there may be
some minor differences between, for instance,
the debugging features available on the Web
Client, and those of the Windows GUI Client.

In order to make the system easy to use and
learn, users must have appropriate,
comprehensive, and understandable
documentation at their disposal

[Windows GUI] The IDE should be able to edit
the text of a source file, and run it, from the
same Window or Program.

This integration provides convenience to the
user

[Windows CLI] The executable should accept
Command-Line Arguments (CLAs) as a means of
specifying the script to be run (E.g.
Interpreter.exe /Run:Script.Ext)

This is a standardised OS mechanism, thereby
bringing familiarity to the user, and enabling
programs written in the language to be executed
automatically, E.g. by task scheduling in

B

30

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

Microsoft® Windows™

Success Criteria

Criterium How to Evidence This

A Programming Language Formal Specification (LangSpec) Specification Document

Serviceable Language Features including: Screenshot & Source & Binaries

 Data Types Screenshot & Source & Example

 Predefined Functions (for common tasks) Screenshot & Source & Example

 Encapsulative Units (E.g. Functions) Screenshot & Source & Example

 Procedural Programming Constructs (While; If; etc…) Screenshot & Source & Example

 OS Interoperability (CLAs & Exit Codes) Screenshot & Source & Example

 Specialist Mathematical Features: Screenshot & Source & Examples

 BasedNumber Manipulation Screenshot & Source & Example

 Boolean Logic features Screenshot & Source & Example

 Maths Expression Evaluation Screenshot & Source & Example

A Programming Language Runtime (engine) which can execute
Scripts

Screenshot & Source

[Windows GUI] An IDE with text-editing and script-running
abilities

Screenshot & Source & Binary

[Windows GUI] A simple, familiar graphical design Screenshot

[Windows CLI] Takes a Command-Line argument for the script
to run

Screenshot & Source & Binary

[Windows CLI] Returns the Exit Code of the Script just run Screenshot & Source

[Web Client] Runs on a variety of different browsers on
different devices

Screenshots

[Web Client] Allows the user to enter source code into a text
field and thereafter execute it

Screenshot & Source

B

31

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

Singular Expressions can be evaluated independently (without
having to run a whole script)

Screenshot

Instructions and Documentation are organised and easy to find Screenshot

The Language is easy to learn and use Get the stakeholders to learn and
use the language, measuring how
quickly they become accustomed
to it, compared to other similar
languages

These tables will be revisited at the end of §Development, when I have a prototype product against

which to use the criteria.

B

32

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

Design
Overview
This programming language project fundamentally involves two stages:

1) Delineate a Formal Language Specification for the Programming Language (in accordance

with the needs of the Stakeholders, and Requirements of the Hardware, Software, and Use

cases)

2) Implement a system to execute any programs written in the Programming Language, and

which comply to its specification. This system needs to run on all the computer types

declared by the stakeholders during the investigations (x86 Windows Computers for GUI and

CLI, and android mobile devices)

It would be impossible to perform the latter without having completed beforehand the former; a

runtime engine cannot be written without knowing what it is supposed to be running, and what

specific form and syntax its source code is supposed to be compliant with. Firstly therefore, I shall

determine the nature of the language, and thereafter, discuss its architecture (structure), and the

computational methods I will employ to execute it.

Formal Language Specification
Here I officially outline the specification for the Programming Language to be implemented. The

language is a Formal one which means that it is concise (= succinct) and unambiguous (= never

equivocal in meaning).

Choosing a Name

Before I go any further, it is important that I have a proper name for this project, because this will

help in labelling and identifying files and resources associated with the project, which improves

organisational efficacy.

I have settled on the name “DocScript” for the Programming language. “Doc-“
comes from the Latin “doctus” meaning “to teach”, as in doctorate or indoctrinate.
Since one of the primary purposes of the language is to be an effective and
approachable teaching tool, I feel that the name is at least somewhat fitting, and
not just chosen out of the blue. This claim – I fear – cannot justifiably be made of
most modern products and services.

 The file extension for DocScript source is therefore “.DS”.

General

Universal characteristics of the Programming Language

Spec. Point Explanation & Justification

The language is not case-
sensitive (apart from
inside String Literals)

The stakeholders for the educational and hobbyist use cases wanted
an easy-to-use programming language. Programming languages
wherein “True” is a valid Boolean literal but “true” is not, are simply
frustrating and do not lend themselves to a worry-free style of

B

33

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

development. In fact, some such case-sensitive languages encourage
programmers to use ambiguous and confusingly-similar variable
names such as “name” for a constructor argument and “Name” for a
corresponding Class Property member. I resent this nomenclature as it
is needlessly unclear for beginners, which is precisely what DocScript
is trying to avoid.

There are three
DataTypes;

String,
Number,
and Boolean

The stakeholders wanted to use the language for pedagogic purposes,
wherefore it is important that the language implements some features
found in more advanced languages – for instance DataTypes. Without
DataTypes, a variable or expression’s value can be open to
interpretation, and developing knowing the variety of data wanted by
a Function or Operator is significantly easier and provides a
framework.

On the other hand, many programming languages implement a much
more strict and diverse type system than DocScript will. Whilst it could
be argued that more data types would be better, this would also
hinder and add unwarranted complexity to the solution. There is an
elegance to being able to perform a wide range of tasks with only a
few essential tools (or in this case, DataTypes).

These three specific DataTypes are rather essential and can essentially
be used together to represent any type of data desired. Each of the
Types has a corresponding literal (elucidated later).

All Variables have a default value, according to their DataType:

• <Number> 0
• <String> ""
• <Boolean> False
• <*@> (An Empty Array)

One-dimensional Arrays
are supported for each of
the DataTypes

Because it is common to have to process a list or collection of items in
a program, having arrays makes a programming language more
extensible. The stakeholders are seeking a versatile system, so this is a
suitable feature.

To retain the simplicity of the language however, I will keep the
bounds of these Arrays to one dimension. This prevents arguably
unnecessary complexity in the implementation runtime too.

There is a high degree of
verbosity and logging
during the execution of
Programs written in
DocScript.

This greatly aids in debugging both for users of the language in
debugging their own programs, and for me whilst writing the runtime.
It also means that if a runtime error were to occur, the user would
essentially have a detailed and highly-verbose stack trace telling them
exactly what had happened thitherto to cause the error.

Executable statements and
instructions are contained
in Functions

The stakeholders seek a modular and compartmentalisable system, so
having all a program’s content in a singular file would encroach upon
this requirement. Therefore, being able to have multiple Function
Statements per file allows for better organisation.

B

34

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

Functions can take in a series of Arguments (each which its own
DataType) and return an instance of one of the DataTypes, or, return
“void” to indicate that the Function was a SubRoutine.

This principle of returning void is commonplace and can be found in
other languages such as C, C++, Visual C# .NET, and Java. Thus, it is
another example of how DocScript prepares its programmers for
eventual graduation to more advanced programming languages.

A Program is a collection
of Functions and Global
Variable Declarations.

Global Variables make it easier to have shared data between
Functions, and the Stakeholders seek an easy-to-use and quick
development platform.

There must be one
EntryPoint Function per
DocScript Program

Since a DocScript Program contains a List of Functions (along with zero
or more Global Variable Declarations), one of those functions must be
executed first. The Function has the identifier “Main” and must have
one of the following Function Signatures:

• Function <Void> Main ()

• Function <Number> Main (<String@> _CLAs)

The principle of EntryPoints can be found in languages including C,
Visual B.A.S.I.C. .NET, and even Python to an extent. It is another
example of how DocScript prepares its programmers for more
advanced programming languages, which was one of the stakeholders’
desires.

Programs can take in
Command-Line Arguments
(CLAs) and return an Exit
Code

One of the Stakeholder requirements was:
“The language is able to interoperate and communicate with the
operating system, E.g. via Command-Line Arguments, and Process Exit
Codes”.

Because this is a standardised Operating System Mechanism, it is
important that a teaching tool such as DocScript enables this
mechanism to be taught, by implementing it!

Basic Interaction occurs
through the built-in Input()
and Output() Functions

Example:

Output("Hello, World!")

Returns the Input from the User:
Input("What is your Name?")

These provide a simple and easy means of obtaining Input and
delivering Output to the user. One of the Stakeholder requirements
was: “There are some useful pre-defined functions for common tasks”.

Therefore, by having these axiomatically-essential functions, basic
operations in the language become possible. The obvious names also
aid in meeting the Stakeholder spec of the language being easy-to-use.

B

35

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

Syntax

Physical form and grammar used in DocScript Source

Spec. Point Explanation & Justification

The Keywords are:

Function
If
Else
While
Loop
Return

The stakeholders for the educational and hobbyist use cases wanted
an easy-to-use programming language, so having an immemorable
litany of keywords (as seen in the likes of modern-day C++ with its 95)
would be herefor unsuitable and unnecessary.

These six keywords are enough to facilitate fully Turing-complete
functionality, but there are also some simply nice-to-have features
here such as the Loop keyword which works like this…

Loop (10)
 Output("Hello, World!")
EndLoop

…to output <String> "Hello, World! " 10 times. This would otherwise
have to be done by manually setting up an iterator and interatee
variable with a While Statement. Therefore, this is a language feature
which makes DocScript suitable for the “experimentational” style of
programming desired by the stakeholders.

One of the Stakeholder requirements was:
“Allows the programmer to use standardised, commonplace
procedural programming constructs including While and If
Statements”

This is hereby facilitated through the If, While, and Loop Keywords.

Statements are closed with
an End{Statement} block:

EndFunction
EndIf
EndWhile
EndLoop

Example:

Function <String> GetName (<Boolean> _WithSurname)
 If (_WithSurname)
 Return "Ben Mullan"
 Else
 Return "Ben"
 EndIf
EndFunction

This is a more suitable means of Statement closure than (E.g.) a closing
curly bracket (Brace) } because it enables the programmer to see
which Statement type if actually being closed. At the end of many C-
style language programs, one is often greeted with the following
atrocity:

 }
 }
 }
 …Another 10 Lines of this barbarism…

B

36

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

 }
}

In a language such as Visual B.A.S.I.C. .NET however, the same section
looks like this…

 End Get
 End Property
 End Class
 #End Region
End Namespace

…which is significantly more useful and readable. Therefore, DocScript
takes a leaf out of this book, and uses the Statement Ends following
the pattern End{Statement} E.g. EndLoop.

Comments are specified
with a # at the start of a
Line

Example

The User’s Domain Username
<String> UserName : "MullNet.NET\Ben"

Having comments at the source level is a much-needed feature of any
language because it permits the programmer to annotate and clarify
components of the script. This is suitable because the Stakeholders
require a tool for teaching, so they’ll be writing scripts and revisiting
them in due course, and needing to remember what the script does.
This can be achieved by adding a comment at the top of the script to
describe the file’s purpose. Incidentally, comments can only befall at
the start of a line, not mid-way through one.

DataTypes are specified in
Pointy Brackets < >

@ is used to indicate that a
type is an array

<String>
<Number>
<Boolean>
<Void>
<String@>
<Number@>
<Boolean@>

The char “@” was chosen on account of it resembling an “a” as in
“array”. It is not a valid identifier char, so is always unambiguous and
never part of the identifier (or in this case, DataType).

Of course, there couldn’t possibly be a “<Void@>”, and <Void> is only
valid as a return type form a Function, not for a Variable’s Type,
because it represents the absence of data.

Other languages use < > with relation to DataTypes too, so this is
fitting and readies the programmers mind for exposure to alternative
programming languages too.

Square Brackets [] are
used to increase the
precedence of an
Expression Section

Example:

Output(5 + [2 – 6 * [7 ^ 7]])

This is a very necessary feature, because the Stakeholders need
standard mathematical features, of which this is one.

The same character is Example:

B

37

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

never used for more than
one purpose

() Function Call & Declaration
[] Expression encapsulation (Often ())

& Concatenation Operator
' Logical And Operator (Often &)

= Comparison Operator
: Assignment Operator (Often =)

By using different characters, the benefits are two-fold:

• The programmer/learner realises that the two elements are
distinct and serve subtly or wildly different purposes. Whenever
they see an instance of the character, they immediately know
precisely what it’s being used for.

• I, the writer of the parser and lexer for the language, get to have
an easier time determining if everything is in the right place in the
source. Where ever there is a “(“, there should always be an
identifier directly before it. In other languages such as C, these
same brackets () are also used for expressions so there isn’t the
same level of certainty and regularity.

Of particular importance is the distinction between the equality and
assignment operators. These serve dissimilar purposes and yet have
sometimes the same char (E.g. “=” in Visual B.A.S.I.C. .NET). The
language clearly differentiates these at the syntactical level, which
meets the stakeholder need of creating an effective teaching tool.

This is therefore a usability feature.

Parenthetically, the Character $ is reserved for internal use by the
Parser, and is not valid as an Identifier, Operator, or Grammar Char.

There are multiple
manifestations of numeric
literal:

9637426877
6543482740.9902
3AB4FF_16

One of the stakeholder requirements was:
“Implements the requested specialist mathematical features;
BasedNumber manipulation, Boolean Logic, Mathematical Expression
Evaluation”

To achieve this, I am therefore allowing numbers of different bases to
be directly represented through literals. This greatly improves the ease
with which numbers of different bases can be dealt with in DocScript
programs; no specialise function call is needed.

For instance, to represent the number 1210 in base 10, the
programmer types 12 or 12.0 or 12_10. To represent 1210 in base 2
however, the programmer can type 1100_2.

All numeric literals must therefore match this Regular Expression:
^((\d{1,10}(\.\d{1,4})?)|[A-Za-z0-9]{1,10}_\d{1,3})$

Identifiers can only All Variables and Functions have a name associated with them, called

B

38

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

contain alphabetic
characters and
underscores

an Identifier. In DocScript, identifiers must match this Regular
Expression:
^(_?[A-Z]+[A-Z_]*)$

This reduces ambiguity because identifiers cannot contain digit (/\d/)
chars, meaning they are impossible to confuse with numeric literals. If
identifiers could contain digits, then “A3B4FF_16” would be valid as
both an identifier, and a numeric literal. This would mean the language
were no longer unambiguous, which is not permitted in this formal
programming language.

LineBreaks are significant,
but Tabs and superfluous
Spaces aren’t

Because instructions end on LineBreaks instead of (E.g.) semicolons in
DocScript, LineBreaks are semantically-significant. However; this line…

<String> Name : GetName()

…and this one…

< String > Name:GetName()

…are semantically identical despite their syntactical differences.

This is done to make the language more permissive and tolerant of
minor syntactical oddities or mistakes made by the programmer. This
aids in meeting the stakeholder requirement of being an effective
teaching tool.

This is important, because one of the stakeholder requirements was:
“An easy-to-use and learn programming language, suitable for
pedagogical (=teaching and instructional) use”.

B

39

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

Operators

= Built-in useful logic used in expressions along with their Operands…

Research

To begin defining the fashion in which DocScript Operators should work, I have conducted some in-

depth research on Operators...

Characteristics

Terminology

• Monadic, Dyadic, Triadic: The fact that there are {1, 2, or 3} separate states available

• Unary, Binary, Ternary: The fact that something is in one of {1, 2, or 3} separate states

B

40

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

Expression Operators Table

With this research in mind, I have defined the DocScript Operators as follows:

Operator Description Operands Type Return Type Precedence

= Equality Comparison 2 (Anything) Boolean 1

& Concatenation 2 String String 2

¬ Logical Not 1 Boolean Boolean 8

' Logical And 2 Boolean Boolean 7

| Logical Or 2 Boolean Boolean 5

¦ Logical Xor 2 Boolean Boolean 6

+ Addition 2 Number Number 4

- Subtraction 2 Number Number 4

* Multiplication 2 Number Number 3

/ Division 2 Number Number 3

^ Exponentiation 2 Number Number 3

% Modulo 2 Number Number 3

~ InvertPolarity 1 Number Number 8

Rules

• The Operators are Assign (:) and the Expression (Expr.) Operators

• Operators of the highest precedence are executed first

• The Logical Operators are Short-circuiting

• All DocScript Operators are left-associative.

• All Unary Operators have their Operand to their Right

• All Unary Operators must have the equally-highest precedence of all operators

• All DocScript Operators only ever read form their operands; they do not write to them

Explanations & Justifications

• All operator chars have been chosen as standard characters found on any ISO keyboard.

Therefore, they are easy to type and do not require the memorisation of Alt Codes.

• Where possible, the operator chars have been chosen in accordance with what is standard

practice for many programming languages. This makes meets the stakeholder need of the

programming language being easy-to-use, and is therefore a usability feature.

• The unary operators have to be executed first (have the highest precedence) because the parser

will generally read from left to right, in accordance with the language’s operator associativity.

B

41

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

Instructions

With most of the language now clearly defined, I am able to see that these are the possible forms of

valid line:

Possible Line Forms within a Function:

• #Comment

• <Number> Age

• <Number> Age : 17 *E

• Age : 17 + 1 *E

• Return

• Return "Value" *E

• SayHello()

• SayHello("Ben") *E

• If (True) *E

• Else

• EndIf

• While (True) *E

• EndWhile

• Loop (10) *E

• EndLoop

*E = Includes an Expression (Expr.)

Therefore, there are essentially 8 types of possible instruction which could appear in a DocScript

Source file:

Instruction Type Example

Variable Declaration <String> Name

Variable Assignment Name : "BenM"

Return To Caller Return Name

Function Call GetFullName(Name)

Function Function <String> GetFullName (<String> _Name)

If Statement If (Name = "BenM")

While Statement While (¬ [Name = "Ben"])

Loop Statement Loop (GetStringLength(Name))

The last four Instructions (emboldened) are Statements, meaning that they can themselves contain

other Instructions, recursively. Each Statement has its own variable scope, and therefore its own

Symbol Table. That makes the Symbol (Identifier) Lookup order the following:

B

42

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

Variable Lookup Order: Localmost → FunctionLocal → Global

Function Lookup Order: Global (Program → BuiltIn's)

An Example DocScript Program

Now that there is a Formal (= concise and unambiguous) specification for the DocScript language, I

have written and am providing this example program to show what it actually looks like:

Function <Number> Main (<String@> _CLAs)

 #CLA Input looks like "/Name" "Ben" "/Age" "13"
 #Get the Value for an Input()'ed Key

 <String> _Key : Input("Sought Argument's Key:")
 <String> _Value : GetCLAValueFromKey(_CLAs, _Key)

 Output("Value: " & _Value)
 Return 0

EndFunction

Function <String> GetCLAValueFromKey(<String@> _CLAs, <String> _Key)

 <Number> _CurrentCLAIndex : 0

 While (_CurrentCLAIndex < [Array_MaxIndex(_CLAs) + 1])

 If (Array_At(_CLAs, _CurrentCLAIndex) = ["/" & _Key])
 Return StringArray_At(_CLAs, _CurrentCLAIndex + 1)
 EndIf

 CurrentCLAIndex : [CurrentCLAIndex + 1]

 EndWhile

 Return "No Value found for Key [" & _Key & "]"

EndFunction

B

43

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

DocScript System Architecture
Because I now have a solid and objective specification for what the programming language is, I can

design the system which will run programs what are written in compliance with that specification.

At a Glance

On account of the stakeholders’ different intended use cases and correspondingly different

computer types, it was decided in §Analysis that the system would be broken down into a base

“engine” layer, on top of which would sit the various implementations. I provided this diagram:

However, because this is too vague and lacks the detail required to carry out the implementation of

each of these four blocks, I have created this more in-depth architecture diagram:

Explanations & Justifications

• The core “Engine” is in reality to be implemented as a DLL (.NET Class Library) which I shall

hereinafter refer to as the DocScript Library DLL. This is a suitable way of writing the base logic

because a DLL provides reusable, maintainable (via successive in-situ recompilation) and scalable

(via the addition of supplementary DLLs) Modules, Classes, and Methods. I would not be

B

44

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

afforded this same level of adaptability were I to simply copy and paste the interpretation logic

from one implementation (E.g. the Windows IDE) to another (E.g. the Windows CLI).

• To meet the stakeholders’ need of the verbose logging, any log messages generated by script in

the Library DLL will be “piped” upwards to the implementation, for it to deal with. There is

however, an interesting and nuanced problem herein; how can these messages be displayed

one a Win32 Window, Command-Line Interface, and Webpage, all with the same piping-up

function? My solution to this is to use a delegate LogEventHandler which must be assigned a

function (Lambda Expression or AddressOf Function Pointer) by the implementer of the DLL. In

other words, the DLL will simply say “Here’s a LogEvent for you; do what you want with it”. Then,

the CLI, GUI, or WebPage (via the Server-Side API) can deal with the Log Message in whatever

fashion is applicable. This is a highly-extensible architecture as any implementation can be

made, including ones I have not hitherto conceptualised such as saving the LogEvent to a File or

the Windows System Event Log. For this reason, I have detailed the “Log Window” as an

endpoint component of the Windows IDE implementation (on the above diagram).

• The AJAX transport method for the API to WebPage console is suitable because this reduces

server traffic and increases the speed with which distributed applications can be hosted. The

principle of AJAX is that the client (WebPage) makes an AJAX request such as

/API/Get.ASPX?Item=CurrentTime and this HTTP request doesn’t return a whole HTML

webpage, but instead, a serialised form of what was requested by the client, such as in XML;

<APIResponse CurrentTime="12:09" />. This is therefore a very scalable and adaptable

transport method, because almost any platform can make a simple HTTP request, and therefore

new features and implementations can be added in the future, without having to alter the

Server-Side API of which I speak.

• Having the DataBase as an SQL one is more complex to configure, but is significantly more

powerful because SQL queries can themselves contain much of the logic which would otherwise

have to be carried out by the server-side scripts. The main advantage however, is that if several

requests come in at exactly the same time to the API, then they can be handled without fear of a

DataBase write collision. Reading from a traditional File DataBase (such as a CSV or XML File)

would soon lead to the occurrence of a collision; no request would be able to use the file

because it would be IO-locked by another request.

To Compile, or not to Compile

I am principally faced with the choice of implementing the DocScript execution logic as either a

Compiler (as seen with E.g. C++) or an Interpreter (as seen with E.g. VBScript). A brief comparison of

these methods is as follows:

Interpretation Compilation

Comprehends the Source, builds an IR*, and
then executes it immediately

Comprehends the Source, builds an IR*, then constructs
machine code instructions for the IR, which are saved to
a binary executable file such as an EXE.

Execution phase is slower Execution phase is faster

Permit more in-depth debugging and
viewing of program contents during the

More difficult to deconstruct program during its
execution

B

45

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

execution

The entire interpretation process must
occur each time the user wishes to execute
the program. This requires the source each
time.

The first two stages (Parsing and Lexing) need only
occur once, during the construction of the binary.
Thereafter, the program can be executed as many times
as is desired, without having to look at the source again.

User must have a copy of the Interpreter on
their computer

User needn’t have any additional software on the
computer

*IR = An Intermediate Representation (such as an Abstract Syntax Tree). In DocScript’s case, the IR is
an Instruction-Tree/Program-Tree (explained later)

DocScript will be an Interpreted Programming Language because the purpose of the language is to

provide a highly-verbose debugging-friendly extensible development platform, which interpreters

can achieve most effectively, owing to the fact that the source code is always available for

comparison to the IR, and that the IR remains in memory during the execution. This also allows for

other interesting possibilities including serialising the IR to XML and displaying a Program or

Expression Tree. This wouldn’t easily be possible with a compiled program.

Furthermore, the factors of speed, and requiring the interpreter on the user’s computer, are less

critical for this situation; of course DocScript won’t be the world’s fastest programming language,

but that’s not its purpose. In this instance, having extensive debugging abilities is more important

than not needing an extra interpreter binary on the computer.

The Three Stages of DocScript Interpretation

Most compilers [Below] have a Front End and Back End. The Front End Takes the source and

produces an Intermediate Representation (IR) such as an AST. The Back End takes in the IR, and

produces a machine code executable from it.

[Above] A Compiler’s Architecture

B

46

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

Explanation: Although DocScript isn’t a Compiled Language (at this point in time), it’s interpreter will

nevertheless have a Front End (to build an IR from Source) and a Back End (which takes in an IR, and

executes each instruction in Function Main straight away).

Justification: This architecture means that if I actually wanted to be able to compile DocScript into

EXE Files in the future, then all I would have to do, would be to take the already-existent IR, and

generate machine code to correspond to it. Thus, this is an extensible architecture, which accounts

for the potential needs of the post-development phase.

[Above] A Source-To-IR view of a Compiler

B

47

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

These are the three stages of DocScript

Interpretation.

The Parsing (other compilers might sometimes call

this scanning) and Lexing stages form the Front End,

whereas the Execution is the current Back End. This

segmented structure means that each component

can be changed and updated and improved

independently of the others, as long as it keeps the

same interface. In other words, as long as the Lexer

always takes in some Tokens, and returns some

Instructions (see the Instructions Table @ Formal

Language Specification) then it can really do anything

it likes internally. Its workings can be entirely

changed out, and the system as a whole would

continue to work because of the compatible

interface. This is again an extensible architecture,

suitable for this project because of the potential for

future expansion of the project in the post-

development phase.

Parsing & Tokens

Any comments which appear in the source (E.g. #This is a Comment) do not become tokens.

They are discounted at this first stage. A Token is a small structure-defined Object with a Value (from

the source), a TokenType (see below table), and a LocationInSource Property, which greatly aids in

debugging for the user, because they can see the exact location of an erroneously-placed Token.

B

48

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

Token Types

These are the [TokenType]s in DocScript:

TokenType Example

Unresolved (Only used before a Token’s Type is determined)

StringLiteral "Value"

NumericLiteral 0110_2

BooleanLiteral True

Keyword Function

DataType Number

Identifier Main

DSOperator &

GrammarChar (

LineEnd *

StatementEnd EndFunction

TokenType Regular Expressions

As a means of determining a TokenType, from a Token’s Value, I have written these Regular

Expressions:

01 StringLiteral ^("[^"]*")$
02 NumericLiteral ̂ ((\d{1,10}(\.\d{1,4})?)|[A-Za-z0-9]{1,10}_\d{1,3})$
03 BooleanLiteral ̂ ((TRUE)|(FALSE))$
05 Keyword ^((IF)|(ELSE)|(WHILE)|(LOOP)|(RETURN)|(FUNCTION))$
06 DataType ^(((STRING)|(NUMBER)|(BOOLEAN))@?|(VOID))$
07 Identifier ^(_?[A-Z]+[A-Z_]*)$
08 DSOperator ^(:|=|&|¬|'|\||¦|\+|\-|*|/|\^|%|~)$
09 GrammarChar ^(\(|\)|\[|\]|<|>|\,)$
10 LineEnd ^(\r\n)$
11 StatementEnd ^(END((IF)|(WHILE)|(LOOP)|(FUNCTION)))$

Explanation: These TokenTypes help with the subsequent Lexing stage, wherein accounting for all

possible values of a Token would be impossible, and it is therefore necessary to have an indication of

what the type of a Token’s value is, without having to know what the value itself is.

Justification: Having many different TokenTypes means that these is less additional analysis needed

within the Lexing stage. For example, I could have just had a singular TokenType for both Keywords

(E.g. Function) and StatementEnds (E.g. EndFunction). However, then within the Lexer logic, I

would need to write an additional If Statement to identify where the StatementEnds are, each time

one was expected. This would be needlessly-indirect. Therefore, it’s best to have this healthy,

heterogeneous multiplicity of TokenTypes.

B

49

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

Parsing Algorithm Pseudocode

This is my pseudocode for what the parsing Algorithm (Source → Tokens) looks like “from 1000 feet”

as it were:

REM ╔═══╗
REM ║ DocScript Parsing Process ║
REM ╚═══╝

REM 1) Initialisation
' - Ensure all LineBreaks are valid (CrLf)
' - Load in Lines of Source

REM 2) Segmentation
' - Blank out any #Comments or Whitespace Lines
' - Ensure nothing already exists in the Source which matches the SLIT RegExp
' - Replace StringLiterals with SLITs e.g. $SLIT_0$
' - Generate Segmented Tokens:
' - (For Each Line, and For Each Character thereof, evaluate if it's a WordChar
 or SplitAtChar...)
' - Remove any Null Tokens (Whitespace, etc...) (...Except from LineEnd Tokens)
' - Ensure all remaining characters are valid (E.g. No SpeechMarks)
' - Replace any SLITs with their original StringLiterals

REM 3) Classification
' - For Each Token, attempt to match it to a RegExp for its TokenType
' - Ensure all Bracket usage is balanced (and), [and], < and >
' - Ensure all Statement Openings and Closings are balenced (Function to EndFunction, etc...)

REM [_RawSourceLines] → [_CleanSourceLines] → [_SegmentedTokens] → [_NonNullTokens]
→ [_TokensWithStringLiterals] → [_ClassifiedTokens]

Lexing & Instructions

As can be seen in the Output of the Lexer, and the Input of the Executer, each type of Instruction

(see the Instructions Table @ Formal Language Specification) has a corresponding class in the

interpretation logic. These classes have their own Properties which differ for each of the Instruction

Types. The IfStatement class for instance, has a member called Condition, which is an expression to

indicate whether or not the IfStatement should run its Contents.

In other words, the Lexing occurs in the constructors for the Instruction Classes. When invoked,

these constructors are passed the part of the TokenList (from the Parser) required to create the

Instruction.

Instruction Classes & Interfaces

Justification: I therefore need some way to represent each of these Instruction Classes in a logical

object-orientated fashion. All the instructions have a method called Execute(), and all the

Statement Instructions additionally have a Property called Contents, as well as a private Symbol

Table called ScopedVariables.

Explanation: To implement these Instruction Classes, and ensure that they have the required

methods and properties within them, I shall therefore use the Object-Orientated feature of

Interfaces like this:

• A Base Interface IInstruction declares the Execute() Method

• A Child Interface IStatement Inherits IInstruction and declares Contents and

ScopedVariables

B

50

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

• Each Instruction Class then Implements the appropriate Interface and defines the methods

declared by that Interface

Diagrammatically, that relationship looks like this…

Instruction Classes Diagram

(This, and several of the diagrams henceforth, were made with Visual Studio Modelling Diagrams, or the Visual

Studio .NET XAML and Windows Forms Designers)

Instruction Class Members

B

51

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

These last four Classes Implement IStatement, which means implicitly that they implement IInstruction too

(because IStatement Inherits IInstruction)

Instruction Trees

The output of the Lexer is an IR (Intermediate Representation), which in DocScript’s case, is

essentially an “Instruction Tree”.

Here is an example DocScript Instruction Tree and associated Program:

Function <Void> Main ()
 If (System_GetTime() = "12:09")
 Output("The Time is Correct")
 EndIf
 Return
EndFunction

Lexing Algorithm Pseudocode

Because the Lexing occurs in the constructors for the Instruction Classes, those essentially contain

the Lexing Logic, and are each very much specific to whichever IInstruction they represent. This is

what the VariableDeclaration’s constructor looks like:

REM Source should look like:
REM <String> Name
REM <Boolean@> _Pixels : GetImageRow(0)

REM Tokens should look like:
REM [GrammarChar], [DataType], [GrammarChar], [Identifier], [LineEnd]
REM [GrammarChar], [DataType], [GrammarChar], [Identifier],
 [ExprTokens...], [LineEnd]

B

52

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

REM Fields to Initialise:
REM DataType
REM Identifier
REM AssignmentExpr

LogLexingMessage("Began constructing a VariableDeclaration...")

REM Ensure that there are enough tokens to construct the IInstruction
REM Ensure that the last Token is a {LineEnd}
REM Ensure that the main Token Pattern Validator herefor is satisfied

REM The DataType should be derivable from the 2nd Token
REM The Identifier should be derivable from the 4th Token
REM If there is an AssignmentExpr, derive it from all Tokens after the 5th one (6t
h onwards...)

'Token 4 should be the Assignment Operator
'Tokens after Token 4 (5 onwards) should form the AssignmentExpr, up to the {LineE
nd}

LogLexingMessage("...Finished constructing a VariableDeclaration Object for & Me.I
dentifier)

Explanation: The Tokens must for the most part follow a pre-defined syntax and order. In this

instance, the first Token must always be a <, but the next Token – the DataType – could be one of six

possible values. The Assignment Expression (for initialising the variable with a value) could appear in

so many forms that it is impossible to account for all of them. Therefore, my approach does not deal

with the Token Stream as a whole, but instead, processes the Tokens one-by-one.

Justification: This incremental, stepping-forward-through-the-tokens approach means that if there is

an erroneously-positioned or unexpected token, then it is possible to pinpoint precisely where that

token is, and report it to the user. Although simply matching the whole token stream against a

Regular Expression or TokenPatternValidator would be easier, it would not provide this level of

verbosity.

Execution & I/O Delegates

This, the third in and final stage of DocScript Interpretation, is where a fully-formed Instruction Tree

IR is executed, starting with any Global Variable Declarations, and followed by the Function Main

EntryPoint. As can be seen from the valid EntryPoints in the Formal Language Spec., the program can

take in Command-Line Arguments (forwarded by the Library DLL Implementer) and Return an Exit

Code (0=Okay; ¬0=Error).

Because each Instruction implements the Execute() method, and each IStatement Instruction calls

Execute() on all its child Instructions (in its Contents Property) recursively, only the top-most

Instructions inside any Function need to be executed. By design, the recursive nature of the

Instruction Tree does not need to be dealt with by the executor.

The ExecutionContext Class [DocScript.Runtime.ExecutionContext]

The DocScript Library DLL is implemented into three different application forms: The Command-Line

Interpreter, the Windows IDE, and the Web Console. When running under each of these contexts,

B

53

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

the built-in Input() and Output() Functions (see the Formal Language Spec.) need to do different

things. For instance, in the Command-Line Interpreter, Output() should write text to the Console.

In the Windows IDE however, it should show a graphical Win32 MsgBox-style Window to the user.

This creates the problem of how to handle the different Input and Output modes at the Library DLL

level.

Explanation: My solution to this problem is to have an ExecutionContext Class, which is passed in to

the Execute() method of an IInstruction, and provides an InputDelegate, OutputDelegate,

and RootFolder for the execution of the Instruction and its Children. Its declaration would therefore

look something like this:

Public Class ExecutionContext
 Public ReadOnly RootFolder As IO.DirectoryInfo
 Public ReadOnly InputDelegate As Func(Of String, String)
 Public ReadOnly OutputDelegate As Action(Of String)
End Class

Justification: This design choice has the effect of allowing the DLL implementer to choose what do to

when the Input() and Output() Functions are called from within the DocScript Program. It is

therefore an extensible design satisfying the needs of all three implementations, as well as allowing

for furtherance of the Input/output methods on the part of the DocScript programmer.

In addition to an ExecutionContext, the Execute() methods require a Stack of Symbol Tables

(Global, FunctionLocal, and then one per Statement) and return an ExecutionResult, which

contains data about whether or not to Return to the caller, and if there is an associated Return

Value. That makes the IInstruction.Execute() Declaration look like this:

GetSurname("Ben", 17) & Ending & IsAllowed()

Other Key Classes

Aside from the Parser, Instruction Classes, and ExecutionContext, the following are some of the most

important Classes in the Library DLL.

Expressions [DocScript.Language.Expressions.IExpression]

There are a number of shared constructs which all Instructions need to be able to construct. One of

these is an Expression, which – in DocScript – is defined as:

“A resolvable collection of Operators, Literals, Variables, and FunctionCalls, which produces a

value”

Example valid DocScript Expressions include: (One per Line)

"Hello, World!"
23.6663
True
"Hello" & ", World!"

B

54

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

"Hello, " & GetName()
"Hello, " & GetFullName("Ben " & "Mullan")
ToString([5 + ~4]) & "9" & ToString(¬True¦False)
[5_12 + 6 - 7.4 ^ 3 ^ ~G()] > ~ 10110101_2
GetSurname("Ben", 17) & Ending & IsAllowed()

To represent these programmatically, I have designed a system of Interfaces and Classes to

represent different Expression Components:

Then, to construct an IExpression Tree (ExprTree) from Tokens – something several of the Instruction

Class constructors will need to do – the utility Function ConstructExpressionFromTokens() is

called. Here is an example of such an Expression Tree:

And here is the corresponding RAW Expression:

GetSurname("Ben", 17) & Ending & IsAllowed()

The most obvious remaining question is therefore: How can an ExprTree be constructed from a

RAW Expression? After some thought, I came up with the following solution:

B

55

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

Explanation: With a Linear Bracketed Level (LBL) constructed, we only need to worry about the

operators and their precedence, because we know, that the contents of the BracketedExprs and

FunctionCall Arguments must be resolved first. Collapsing to Intermediate Operator Trees (IOTs) is

the subsequent stage whereby the operators with the highest precedence are the first to be

collapsed into OperatorExprs. This eventually forms a Complete Tree, free from any LBL Placeholders

(formerly for the Operators, BracketedExprs, and FunctionCalls).

Justification: By firstly forming the Linear Bracketed Level, a layer of abstraction is applied which

permits the collapsing of the LBL into an operator tree. Without the LBL, all Tokens of the Expression

would be exposed, which would render impossible coherent lexical analysis; the lexer would not

know if a given Token is part of the current tree node, or a child one. This is the case because in the

expression-constructing For Loop, the lexer only sees one Token at a time; it cannot contextually and

peripherally comprehend the entire expression simultaneously.

Realisations:

• Resolve()ing an Expression requires all the same resources as Execute()ing an Instruction;

Symbol Tables are needed for Variable and Function Lookups

• We don’t actually need to know what the value of any of the expression components are, for

the purposes of constructing the Expression Tree. All we care about at that stage is which

token is an Operator and which a Literal or a Variable etc…

• The operators with the lowest precedence will be the highest-up in the Tree

(I shall be further elucidating the ExprTree construction process during the Development

 Stage, by means of source code examples...)

Programs [DocScript.Runtime.Program]

This contains an array of Functions and Global Variable Declarations from the DocScript Source.

Explanation: When an Instruction Tree has been created (see the earlier example), it is loaded into a

Program Object, ready to be executed. This class also handles the serialisation of a Program to XML,

and the forwarding of Command-Line Arguments and the Exit Code.

Justification: Without the Program Class, the Functions and Global Variable Declarations would be

floating around in Global Arrays. This would make it very difficult to pass around a DocScript

Instruction Tree. In fact, this mechanism means that there can be multiple DocScript Programs

loaded into a single implementation instance, which wouldn’t otherwise be possible.

B

56

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

Key Algorithms

I have drafted these out in Visual B.A.S.I.C. .NET instead of some made-up pseudocode syntax,

because it is more consistent (…and I can actually run and thereby test them during subsequent

stages of development!).

The Stack-Balanced Algorithm

I will use this for ensuring that the Brackets () [] < > are well-balanced in the input Source. I

also use the same logic for Statement Openings (E.g. Function) and Statement Closings (E.g.

EndFunction) to ensure that they are properly and equally provided in the source. (Also called the

Bracket-Stack Algorithm)

[Above] The ContainsWellBalencedPairs-of-Tea Algorithm (Included in DocScript (.sln) Solution)

Explanation: The Algorithm works like this:

Declare a _TItems Stack

B

57

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

For Each Item In _JustTheRelevantItems

 If the Item is an Opening Component (_Pair.Item1) then Push() it onto stack

 If the Item is a Closing Component (_Pair.Item2) then Pop() stack and if
 the popped Item is the matching Opening Component then fine, but otherwise
 the Items are not balanced

After complete traversal, if there is an Opening Component left in stack then the
source is not balanced

Justification: I had originally thought that I could just get the number of Opening Brackets, and then

the number of Closing Brackets, compare them, and Throw an Exception if they weren’t equal.

However, I decided to implement this method using Generics so that I could use it for both the

Brackets (which are Chars) and the Statements Pairs (which are Strings). The algorithm makes sure

that the _Pairs components are opened in a balanced and in-order fashion. E.g. if done with

brackets, then "([])" would be valid, whereas "([)]" would not be (even though there are the same

number of brackets and squares in the latter).

The Unique Elements Algorithm

I will use this when adding items to the Symbol Tables. Within a given Symbol Table (SymTbl), all

Identifiers must be unique; they act as the Primary Key.

Public Function AllElementsAreUnique(Of _TElement)(ByVal _Array As _TElement()) _
 As Boolean

 Dim _HashSet As HashSet(Of _TElement)
 _HashSet = New HashSet(Of _TElement)(_Array)

 Dim _LengthsMatch As [Boolean]
 _LengthsMatch = (_HashSet.Count = _Array.Length)

 Return _LengthsMatch

 REM Or, in one Line:
 Return (New HashSet(Of _TElement)(_Array)).Count = _Array.Length

End Function

The Function evaluates whether or not each Element in the _Array is unique. In other words, False is

Returned if two or more elements are the same. This works because a HashSet (HashTable) cannot

contain two identical elements, because their position-determining hashes would be the same.

Therefore, if the size of the HashSet is the same as the size of the original Array, then no shrinkage

has occurred during the HashSet construction, and all elements in the _TElement Array are unique.

Key (Global) Variables

To recap: I have herebefore explained and justified the need for several of the most important

Classes in the solution; Parser, Token & TokenType, IInstruction & IStatement, IExpression and

Program. Here, I explain the purpose of some of the key Variables in the Solution:

B

58

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

Variable Description & Justification Validation

Public Shared
DocScript.Logging.
CurrentLogEventHandler
As System.Action(Of
DocScript.Logging.LogEvent)

(As previously mentioned) The value of
this variable is assigned by the
implementer of the Library DLL, to a
Function Pointer, where the target
function processes the LogEvent in
whatever method is applicable for the
implementation. It is needed in order to
avoid having to hard-code a Logging
Delegate into the Library DLL, which
would be bad programming practice, and
mean that the implementations would
all have to show LogEvents in exactly the
same way.

(None needed – apart
from ensuring that the
Value isn’t Nothing
(nullptr) before reading
it. This small check will
be done in the
SubmitLogEvent()
Method with a simple If
Statement)

Public Shared
DocScript.Logging.
ProcessDebugEvents
As System.Boolean

Indicates whether or not LogEvents with
the Severity Debug are processed by the
CurrentLogEventHandler. This is needed
because the number of DebugEvents
produced can be so large, that the
performance of the application is
actually impeded by logging them all.
Because the DebugEvents are not
required during normal usage of the
Interpreter, it is very prudent to be able
to disable them to improve performance
and make the other log messages not
entirely inundated.

(None needed; the value
can only possible be
True or False – both of
which are completely
fine)

Private Shared
DocScript.Logging.
BuiltInLogEventHandlers.
LogWindow_
As
DocScript.Logging.LogWindow

Holds the one instance of a graphical Log
Window (for the Windows IDE’s
LogEventHandler) for the entire
implementation instance. Without this,
the LogEventHandler would have no way
of knowing if a LogWindow had already
been instantiated.

(None needed; either
the value is Nothing
(nullptr) because GUI
Logging is not is use, or
it’s a LogWindow Object)

Private Shared ReadOnly
DocScript.Runtime.Parser.
TokenTypeToRegExp_Table_
As System.Collections.
Generic.Dictionary(Of
System.String,
DocScript.Runtime.Token.
TokenType)

Provides a runtime-initialised Dictionary
of the 11 TokenTypes to the Regular
Expression responsible for detecting
each TokenType (see @ TokenType
Regular Expressions). Without this, a
messy entanglement of If Statements
would have to be used.

(None needed; the
Collection Type is
runtime-initialised, and
is ReadOnly so no
assignment can occur to
it)

Public Readonly
DocScript.Runtime.
TokenPatternValidation.
MinimumRequiredTokens
As System.Collections.
Generic.Dictionary(Of

Provides a runtime-initialised Dictionary
of the 8 Instruction Classes’ Types to the
lowest number of Tokens required to
construct one of those Classes. This acts
as an initial layer of validation on the

(None needed; the
Collection Type is
runtime-initialised, and
is ReadOnly so no
assignment can occur to

B

59

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

System.Type, System.Byte) constructors for the IInstruction Classes,
and without it, a NullReferanceException
could be Thrown when attempting to
read a Token which doesn’t exit.

it)

(There are very few Global Variables in the application ↑ because it is bad programming practice to

use them in an Object-Orientated project such as DocScript. The preponderance of data are stored as

local variables within Functions and Subroutines and Classes.)

Namespaces

The aforementioned key Variables and Classes are organised into a tree-like structure of

Namespaces within the Library DLL. Here is a diagram of what that looks like:

↓ The Left side of the Namespace Tree ↓

Justification: These “Folders for Classes” significantly improve the organisation of logical resources

(Classes, Structures, Enums, Delegates, and Modules) within a large project such as DocScript.

Without them, there would be simply a disjunct coagulation of .NET Types without any easy way of

locating them.

B

60

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

Here is an (abstracted) view of the contents of the two main Namespaces, Language and Runtime:

Piecing It All Together!

With an explanation of what many of the individual key components do now written, I shall

demonstrate how a DocScript Program can be easily constructed from the raw source. This is all that

the implementer of the Library DLL needs to type:

'Log via the Default LogWindow
DocScript.Logging.LogUtilities.CurrentLogEventHandler = _
 DocScript.Logging.BuiltInLogEventHandlers.GUIDefault

'Raw
Dim _Source As [String] = "..."

'Parse
Dim _Tokens As DocScript.Runtime.Token() = _
 DocScript.Runtime.Parser.GetTokensFromSource(_Source)

'Lex
Dim _Program As New DocScript.Runtime.Program(_Tokens)

'Execute
_Program.Run({})

Justification: The algorithms I have designed form a complete solution because:

B

61

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

• The Tokens provide a very useful layer of abstraction on top of the Raw Source, but still provide

access to the location that each component occurs at within the source via the Line and Column.

This is very useful for the next stage (Lexing) because it means that the lexer algorithms don't

have to traverse the source character-by-character, which would be error-prone and very slow!

• The Program Object makes it easy to load in an array of Tokens (a Runtime.Token()) and

execute the Instruction Tree created. Without this, the recursive nature of the Instruction Tree

would mean that a complicated series of individual function calls would have to be made. With

my current design however, each top-level Function's output feeds into the next; Source →

Tokens → Program.

• Having the CurrentLogEventHandler assignment at the top means that the Logging mode

need only be specified once for the entire application. This simplifies an otherwise complex

process.

The DocScript Implementations
The DocScript Library DLL (whose architecture is fastidiously detailed hereabove) will be

implemented into three usable implementations; the Command-Line Interpreter, Windows IDE, and

Web Client (DS Interactive). This Use Case Diagram shows how each implementation might be used,

based on what the Stakeholders have said so far:

The Windows IDE (DSIDE.EXE)

At its rudiments, this implementation has a Window with a TextBox for DocScript

source to be typed into, and an Execute Button to interpret that source using logic

from the Library DLL.

The Criteria and Requirements for the Windows GUI (DocScriptIDE) were:

• [Windows GUI] An IDE with text-editing and script-running abilities

• [Windows GUI] A simple, familiar graphical design

With these in mind, I have designed this ↓ as the Main Window:

B

62

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

User Interface Modelling

This mock-up was made with the Visual Studio XAML Designer and .NET Ribbon SDK:

These are the other Ribbon Tabs:

B

63

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

An About Dialog:

A Help Window:

(Consult the above images for what the following GUI Components look like…)

B

64

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

GUI Component Explanations & Justifications

GUI Component Explanation & Justification
Run RibbonButton The clear colour icon and standardised Keyboard shortcut herefor

make this an easy-to-use feature, and it is in an obvious and well-
labelled location.

When interpretation begins, all controls on the Window will be
disabled, to ensure that no other buttons are pressed whilst the
program is busy interpreting the script. This is a form of validation.

Source RichTextBox This control is clear and large so as to be easy to click on and enter
text into.

InsertCodeSnippet
RibbonButton

This makes is quick and easy for the user to start building DocScript
programs. Amongst the possible insertables will be EntryPoint
Functions, Statements, and full Sample Programs.

GenerateProgramTree
RibbonButton

This button opens a new window which calls
Program.GetProgTreeXML() to render the program onto a TreeView
control, similar to the example provided @ Instruction Trees. It is a
useful feature because it facilitates in-depth analysis of the program
being written.

Status StatusRibbon This control provides at-a-glance data concerning the current state of
the program. It is needed because it indicates to the user that the
program is busy, during interpretation, by means of the text “Status:
Parsing…” and some percentage on the adjacent ProgressBar.

Where’s the Validation?

In choosing an appropriate variety of Control types, the need to additional validation has been

mitigated. For instance, although the Zoom Slider could have been designed as a simple TextBox,

into which a number could be entered, this would needlessly require supplementary validation:

ensure only digits (0-9) have been entered; ensure there are an acceptable number of decimal

places; ensure the value is in a valid range. Because it is a slider however, all these checks are – by

design – implemented into the control and how it can be used.

Axiomatically, the source text from the RichTextBox is – as described in the Parsing and Lexing

sections - validated heavily when it is interpreted. Other areas of the DocScript system do also some

require validation, which is covered later herein.

Usability Features

To make the application easier to use,

Usability Feature Description & Justification
A profusion of Coloured Icons These make the window easy to visually navigate, and

aid in the user being able to quickly see which button
they wish to click. Monochrome icons, on the other
hand, would need to be stared at and deciphered,
before any vague sense of their purpose could even be
derived.

Zoom, Full Screen, and ViewPlus features To make the source text easier to see, the zoom slider
increases the scale of the text. This can be useful for
people sitting far away from the monitor, or with poor

B

65

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

eyesight. Example:

 →

Syntax Highlighting To make the different source elements easier to read,
Syntax Highlighting can be applied to the text. These
are the colours which will be used by each TokenType:

The All-In-One Run (F5) Button This button automates the process of Parsing, Lexing,

and Executing the final Instruction Tree. The user need
only click a singular item to invoke all three of these
separate pieces of logic. It therefore makes the
program easier to use.

The Windows CLI (DSCLI.EXE)

This is the simplest of all the implementations. The premise of this implementation

is to enable DocScript programs to be easily run in an entirely automated fashion.

This interpreter could be task scheduled from within Windows, for example, to run a

DocScript program at a certain time each day.

The Criteria and Requirements for the Command-Line Interpreter were:

• [Windows CLI] Takes a Command-Line argument for the script to run

• [Windows CLI] Returns the Exit Code of the Script just run

I have hence decided that these are to be the Command-Line options for the DSCLI.EXE Program:

Description:
--
DocScript Command-Line Interpreter. Interprets DocScript Source Files.

Examples:
--
DSCLI.EXE /RunSourceString:"Function <Void> Main ();Output(`Hello, World!`);EndFunction"

B

66

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

DSCLI.EXE /RunSourceFile:"X:\Programming\DocScript\HelloWorld.DS"

Argument Usage:
--
/RunSourceFile:<Value> Interprets the specified DocScript Source File
/RunSourceString:<Value> Interprets the specified DocScript Source String.
 Use ; for NewLine and ` for StringLiteralStartEndChar.
/ShowLog Writes Events from the DocScript Log to the Console Output
 Stream during Interpretation
/ProcessDebugEvents Processes and shows Debugging Messages in the Log
 (if the Log is shown)

Explanation & Justification: For running impromptu scripts, remote execution (one of the

stakeholder use cases), and experimentation scenarios, it is convenient to be able to execute some

source directly, without having to save it to a file. \Windows\System32\CScript.exe, for example,

does not support this immediate style of execution – the Script must be saved to a file and run in the

fashion cscript.exe Script.VBS. \Windows\System32\MSHTA.EXE however, can execute text-

only scripts in the fashion mshta.exe VBScript:MsgBox("Hello"). Therefore, DocScript will

implement this useful feature too.

The Web Console (DocScript Interactive)

This is the most multifaceted of all the implementations. With DS

Interactive, I have the opportunity to create a distributed, collaborative,

real-time, multi-client execution environment, and to do something quite

original with it. The goal is to be able to host an Execution Session on the

Server, and to have multiple clients tune in to the Session. Each client will

be able to see Program Output and LogEvents, and can also respond to

Input requests (generated by calls to Input() in the DocScript source).

The Criteria and Requirements for the Web Client Implementation were:

• [Web Client] Runs on a variety of different browsers on different devices

• [Web Client] Allows the user to enter source code into a text field and thereafter execute it

I have therefore designed this API:

(See next page…)

B

67

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

DSInteractive API Sequence Diagram

B

68

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

DSI DataBase Tables

The comments in the above sequence diagram make reference to some DataBase Tables, which

looks like this:

↓ UploadedPrograms Table ↓

TimeSubmitted Source 🔑ProgramName

1:32:49 12-08-2022 Function <Void> Main () … HelloWorld

1:32:49 12-08-2022 Function <Void> Main () … InputName

1:32:49 12-08-2022 Function <Void> Main () … AgeTest

1:32:49 12-08-2022 Function <Void> Main () … Program1

1:32:49 12-08-2022 Function <Void> Main () … PROGRAM3

↓ ExecutionSessions Table ↓

🔑ESID 🔒ProgramName TimeStarted TimeFinished State ExitReason

HELLO_AH42 HelloWorld.DS

Ready

HELLO_AH43 HelloWorld.DS 1:32:49 12-08-2022

Running

HELLO_AH44 HelloWorld.DS 1:32:49 12-08-2022 1:32:49 12-08-2022 Finished Finished Successfully

HELLO_AH45 HelloWorld.DS 1:32:49 12-08-2022 1:32:49 12-08-2022 Finished Input Timed Out for “…”

HELLO_AH46 HelloWorld.DS 1:32:49 12-08-2022 1:32:49 12-08-2022 Finished Finished Successfully

Entity Relationship Diagram

This is the relationship between the UploadedPrograms and ExecutionSessions Tables; the

Primary Key ProgramName becomes a Foreign Key in the ExecutionSessions Table. This is a one-to-

many relationship; one ProgramName becomes many fields in UploadedPrograms:

B

69

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

.

There is one instance of each of the following Tables per ExecutionSession…

↓ ExecutionSession Outputs Table ↓

🔑ID TimeSubmitted OutputMessage

1 1:32:49 12-08-2022 "Enter Name"

2 1:32:49 12-08-2022 "Enter Age"

3 1:32:49 12-08-2022 "Enter A"

4 1:32:49 12-08-2022 "Enter B"

5 1:32:49 12-08-2022 "Enter C"

↓ ExecutionSession Inputs Table ↓

🔑ID TimeSubmitted InputPrompt InputResponse RespondedTo RespondedToTime

1 1:32:49 12-08-
2022

"Enter Name" "Ben" True 1:32:49 12-08-2022

B

70

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

2 1:32:49 12-08-
2022

"Enter
Age"

False 1:32:49 12-08-2022

3 1:32:49 12-08-
2022

"Enter A"

False 1:32:49 12-08-2022

4 1:32:49 12-08-
2022

"Enter B"

False 1:32:49 12-08-2022

5 1:32:49 12-08-
2022

"Enter C"

False 1:32:49 12-08-2022

↓ ExecutionSession LogMsgs Table ↓

🔑ID TimeSubmitted LogMessage Severity Category

1 1:32:49 12-08-2022 "Enter Name" Error Execution

2 1:32:49 12-08-2022 "Enter Age" Warning Lexing

3 1:32:49 12-08-2022 "Enter A" Information Parsing

4 1:32:49 12-08-2022 "Enter B" Verbose Unspecified

5 1:32:49 12-08-2022 "Enter C" Debug System

↓ ExecutionSession Client Execution Packages (CEPs) Table ↓

🔑ID TimeSubmitted JavaScriptToRun

1 1:32:49 12-08-2022 function () { … }

2 1:32:49 12-08-2022 function () { … }

3 1:32:49 12-08-2022 function () { … }

4 1:32:49 12-08-2022 function () { … }

5 1:32:49 12-08-2022 function () { … }

NOTE: IDs start at 1 (not 0). This is so that 0 can be used to mean [none of the records].

B

71

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

The ExecutionSession Object

Those API EndPoints and DataBase Tables make an ExecutionSession look broadly like this:

Explanation: By having a robust and comprehensive API like this, implementing the Client Pages (the

ones with HTML that the browser actually loads) becomes almost trivial; the client need only make

the correct API request. Many of the API EndPoints are for AJAX LongPolling, meaning that once a

request is made (E.g.

/API/Interactive/?Action=AwaitExecutionSessionInitiation&ESID=HELLO_AH42),

the server only returns a response when it is worth doing so (E.g. as soon as the ExecutionSession

with ID “HELLO_AH42” has its State change to “Running”).

Justification: Without these long-polling EndPoints, the client would have to make a high volume of

requests, which would indubitably impact server performance. Pertaining to the aforementioned

example, the client would have to make an

/API/Interactive?Action=GetSessionState&ESID=HELLO_AH42 request every second or

so, instead of just the one long-polling request.

Front-end Pages

I have mocked-up the following for the user interfaces, in accordance with the stakeholder criteria of

needing a simple, functional, and familiar style.

B

72

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

[Above] The DSInteractive Input-requesting procedure

Server-side Validation

Each EndPoint on the API takes in a number of different QueryString Parameters. For example: The

EndPoint…

 /API/Interactive/ExecutionSession.ASPX?Action=GetSessionState&ESID=HELLO_AH42

…takes in the QueryStrings Action and ESID.

For each QueryString passed to an API EndPoint, I will need to validate that it is in an expected

syntactical format. I will do this primarily via Regular Expressions. For instance, the ESID will be

validated against the RegExp ^\w{10}$.

One of the most important initial stages of the validation will be to ensure that each QueryString

specified in the URL is properly-formed, with a corresponding value. In other words, each

QueryString must be in the format ?{Key}={Value}, with & used to join one QueryString

KeyValuePair to the next. This means that the QueryStrings must match this Regular Expression:

^\?([A-Za-z0-9]+=\w+&)*$

In this way, it is guaranteed that none of the QueryStrings will be specified without a value, and that

none of them are malformed. For instance, these QueryStrings would not pass the RegExp

validation:

• Name=

• Name

• Age=&

• Age&

Stakeholder Input
To ascertain whether or not these design decisions I have made about the Formal Language

Specification, DocScript Architecture, and DocScript Implementations are suitable for the

stakeholders, and to ensure that this is broadly what they may have had in mind, I showed this

B

73

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

Design document and several drawings to the stakeholders, and asked for their comments – which I

have summarised as follows:

• The Formal Lang. Spec. describes exactly the sort of thing the Stakeholders were looking for;

simple, consistent, easy to get to grips with (only the 6 keywords etc…)

• The Architecture in its extensible nature is promising and provides possibility for potential future

expansion of the system

• The /RunSourceString:<Value> system on the DSCLI will be very useful to some of the

Stakeholders (Clara and Joe)

• The multi-client features of DocScript Interactive look very exciting and could be a very powerful

educational tool

(The consensus is that I’m ratified to continue the development of the system…)

Testing
This section describes the fashion by which the entire DocScript Solution will be tested. It will be

applicable both during the development, and thereafter, during the evaluation.

Inputs & Outputs

The main areas where Input is received, are:

• DocScript Source

• (…Including sometimes standalone Expressions)

• API URL Calls

• Command-Line Arguments

The main areas where Output is displayed, are:

• Output() Messages from DocScript Programs (MsgBoxes in DocScriptIDE, Console text in DSCLI)

• API Responses

• LogEvents

Testing Techniques

Unit Testing

I shall use Unit Tests in order to create automated tests for all areas of the project. This means that

if I cause an unintended side effect by changing one function, and this impairs the operation of

another function, then this will clearly show up in the Unit Test results. Visual Studio can

automatically bulk-run Unit Tests for me, which saves time.

Destructive Testing

In addition to these routinely-run Unit Tests however, I shall also manually test the application

destructively after I add each feature. This means deliberately attempting to break the system by

entering malformed or potentially dangerous input, to see how this is handled. Suitable error

messages need to be given, instead of the application crashing or becoming unresponsive.

Stakeholder Testing

Because I – the programmer – am aware of how the application works, what sort of input data are

expected, and – which pieces of validation I know I have implemented, I might not always be the

B

74

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

best person to actually test the software. The Stakeholder on the other hand, will end up using the

final product, and they might expect it to work differently that the image I have in my head of it

being used. They might, in other words, do unexpected and unforeseen things, which could have

unanticipated consequences. Therefore, I shall – after every major incremental release of the

compiled DocScript binaries – get the Stakeholders to test the application for themselves.

In order for me to know precisely what they did to cause a certain problem, I

shall get the stakeholders to run the software on their own computers, and

record their every click and keystroke with the built-in Windows Utility,

Problem Steps Recorder – psr.exe. This tool automatically generates a full

HTML report with screenshots, highlighted mouse clicks, and keystrokes,

which I can easily replay to work out wherein the problem lies, with great

acuity. It was, incidentally, one of the new Enterprise Toolkit Features to be

shipped with Windows 7.

Test Data

These are the data I shall use for each of the four Input areas mentioned earlier…

DocScript Source

(One per Block)

VALID: Simplest-possible DocScript Program
Function <Void> Main ()
 Return
EndFunction

VALID: CLA Test
Function <Number> Main (<String@> _CLAs)
 Output("First CLA: " & StringArray_At(_CLAs, 0))
 Return 0
EndFunction

INVALID: Malformed Function
Function <Void> Main ()
 Return
EndFunction
EndFunction

INVALID: 2nd Line not syntactically-valid
Function <Void> Main ()
 {Output(2)}
EndFunction

Standalone Expressions

(One per Line)

VALID
12

file:///C:/Windows/System32/psr.exe

B

75

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

12_10
12.0
12.0009
12_4 * ~9
"Hello, World!"
"Hello, World!" & " More Text"
GetName(17) & GetAge("Ben")
Ident
F(A + B * [C - D]) & [E ¦ ¬F ' G]

INVALID
12_2
"H
~4 + 0~
F(A + B * (C – D)) & [E ¦ ¬F ' G]
GetName[17]

API URL Calls

(One per Line)

VALID
/API/Interactive/?Action=GetSessionState&ESID=HELLO_AH43
/API/Interactive/Upload.ASPX?Item=Source&ProgramNameSeed=Hello%20World

INVALID
/API/Interactive/?ESID=HELLO_AH43
/API/Interactive/Upload.ASPX?Item=Source&ProgramNameSeed

Command-Line Arguments

(One per Line)

VALID
/RunFile:"X:\Programming\DocScript\HelloWorld.DS"
/RunFile:HelloWorld.DS /ShowLog /ProcessDebugEvents
/RunSourceString:"Function <Void> Main ();Output(`Hello, World!`);EndFunction"

INVALID
/RunFile:"X:\Programming\DocScript\HelloWorld.DS /ShowLog
/RunFile:
/RunSourceString:"Function <Void> Main () Output("Hello, World!") EndFunction"

Explanations & Justifications

The wide range of testing data specified here will enable me to effectively invoke all possible corners

(so to speak) of the input-processing algorithms. This will thereby ensure that each component of

logic within the Library DLL and Implementation EXE is functional and works as is intended.

I do not need to exhaustively test every possible value of input, but rather, every possible format.

For example, the same parts of the Command-Line Argument processing algorithm are invoked for

the input values /RunFile:"HW.DS" and /RunFile:"WH.DS"; the second test adds no value and

is futile. However, the different syntaxes /RunFile:"HW.DS" and /RunFile:HW.DS ought to

both be tested, because they are parsed slightly differently and therefore different side effects could

B

76

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

befall in subsequent stages of the program. My chosen Testing Data are designed to test every part

of the algorithms, without repeating any logically-identical values.

Testing Checklist (Interpreter DLL)

After the majority of the development and implementation is complete, myself and the Stakeholders

shall perform each of the following tests, to ensure that the requirements have been met:

Assert-style Test Passed?

An error is thrown if two variables are declared within the same (or relative downstream)
scope, when both variables have the same identifier, or the identifiers differ only by case;
the language is not case-sensitive

*

Variables can be declared in each of the 6 valid DataTypes (The 3 DataTypes, and their
Array variants)

*

A high degree of verbosity is present in the error message resultant of an attempt to
lexically analyse the expression (e.g.) 5 + + 4

*

A Function can be declared with IInstruction-based contents statements inside, such as an
IfStatement If (Expr) {LineEnd} … EndIf

*

A Global variable can be declared outside of any Functions (E.g. <String> NameGlobal
= "Ben Mullan; S7; Y13; U6;")

*

An error is thrown if a Program is written without an EntryPoint Function Main *

A DocScript Program can be written to output "B" if Command-Line Argument [0] is "1", and
"C" if it is "2" (Just an example, to prove that CLAs can affect programme output)

*

A DocScript program can be written to Output() "Hello, World!" *

A DocScript program can be written to take Input() from the user *

A Comment can be specified with # Comment {LineEnd} *

The Expr [5 + 3] * 9 resolves to 72 whereas 5 + [3 * 9] resolves to 32 (proof that
brackets work)

*

The numeric literals 10, 10.0, and 10_10 are all magnitudionally equivalent *

All of the Test Data {Above} run successfully in the DocScript System & Implementations *

Explanation: Each of these is an assert-style test; one attempts to disprove the statement, and on

failing to do so, declares that the system/component has passed the test.

Justification: (The justifications for these are essentially the entirety of the preceding document…)

B

77

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

Post-Development
After the MVP (Minimum Viable Product) described herein has been developed to at least RC0 (the

first Release Candidate), the subsequent stages of development are likely to become increasingly

indistinct; because the product works to some extent, but is constantly being refined and improved,

it is difficult to know when to call it "done"…

Post-Development Testing

…To aid, therefore, in this process of long-term maintenance and improvement for the product, I

shall declare here some testing data to be used during the post-release development.

Explanation & Justification: These are some of the principle reasons for why it is important that I

perform the post-development testing and maintenance:

• Speed: The DocScript system implementations could accumulate encumbering quantities of data

over time, which could slow the software down.

• Certainty: After each new incremental release of the software, I shall continue to run the Unit

Tests on all releases, to make sure that the individual features work as is intended.

• Protecting Reputation: If the quality of user experience were to deteriorate over time, this could

be deleterious for the DocScript software (and brand)'s reputation. Ongoing maintenance is

needed to establish and maintain this reputation, particularly for the Web Implementation

(DSInteractive) because web technologies and standards change very quickly, and insultingly-

modern users will begin to look askance on older (but perfectly functional) methods such as raw

AJAX, or jQuery.

Data to be Used Herefor

Although the system should always remain compatible with all the data stated hereinbefore, there

are a number of additional data, relevant exclusively to the post-development phase:

• DocScript Programs written by the Stakeholders during their initial usage of the system

• Input commands being sent from different operating system clients to the Command-Line

Interpreter running on a Remote Network Server (I only use Windows 7/Server 2008 R2, but the

Stakeholders may use some other operating systems – e.g. which interact differently with PsExec

or Telnet, for remote CLI usage)

• Input data which previously caused an error to occur

• Data which are the result of a change to the environment under which the DocScript software

operates

• Obsolete and older Unit Tests from early project development – to be run every once in a while,

but not on every release compilation because this would be too slow

Explanation: If someone were to develop the DocScript further, they would have scope to do this

because of the extensible way in which DocScript and its components have been designed and built.

The above data sources would be used to develop, test, and extend DocScript. Furtherance of the

system is permitted.

Justification: If the DocScript system were to become legacy code (which in due time is an

inexorableness), then post-development reimplementation and refactoring would occur to

reimplement the “old” source code into new binaries, perhaps written in a different programming

B

78

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

language. The mentioned testing data sources are suitable for this as they are applicable and

pertinent not only to present data collection methods, but to potential future methods too.

This diagram ↓ shows the binaries of the DocScript Solution (.sln). The majority of testing must

occur on the red nodes, because the other binaries are dependent on the base DLLs. All the *.exe

binaries take Command-Line Arguments which will be tested with the specified data, and the DS

Library DLL is tested with all the DocScript source tests and sample Expressions. The Web Parts

(Interactive) are also to be tested with the aforementioned URLs.

[Blue = Implementation Binary] [Grey = Utility Binary] [Red = Library DLL]

B

79

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

Development and Testing
Overview
The Design stage has left me with a clearly-defined, vigorously-evaluated, and extensibly-structured

specification for the DocScript Programming Language. To effectuate and corporealize this plan –

however – I shall work through the following stages…

1) Develop the Core Interpretation Engine DLL

a. Write the Parser (Source → Tokens)

b. Write the Lexing logic (Tokens → Program)

c. Write the Execution Logic (Program → {Output})

2) Develop the Command-Line Interpreter (DSCLI) Implementation

3) Develop the Windows IDE (DSIDE) Implementation

4) Develop the Web-based (DSInteractive) Implementation

5) Test the entire system with different Programs and Scenarios

Programming Conventions Used Herein
Allow me to briefly elucidate how the 75,894 lines of code I am about to write are structured…

Naming Conventions

I shall continue to use the beautiful and unswerving CamelCase style, for all identifiers. Note that

this is different from drinkingCamelCase in the following way:

In addition, I employ the following conventions for identifiers within the solution:

B

80

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

Here are some examples:

, ,

Explanations and Justifications

I maintain vehemently that this is not pedantry. By employing these conventions, I can determine –

just at a glance – precisely where I am able to use a given variable, and what a given identifier is for

(Object, Type, Namespace, Class/Structure, Interface, or Type-Parameter). This provides a veritable

improvement to the speed of development, and the clarity and lucidity of the code written.

Incidentally, single-letter identifiers (e.g. i) are NEVER admissible in my ruling; this is constitutes

wanton laziness.

Modularity and Encapsulation

The solution is modular in the following ways:

• The Library is written as a separate DLL to the other assemblies/binaries which implement it

• Each assembly is split into a number of different Namespaces

• Each Namespace may contain several Classes, Structures, Modules, Interfaces,

Delegates, and Enums

• The Classes and Modules contain both Private/Protected and Public members

Explanations and Justifications

This tree-like, hierarchical structure for the solution, means that it is easy to find any given item, by

logically following the path one would expect to lead to it. It also leads to a good level of

discoverability of items; if one were looking to examine the structure of the DocScript Runtime

system, one would look in Namespace Global.DocScript.Runtime – that much would be

axiomatic I concede, but the modularity is certainly conducive to an ease-of-navigation.

Comments and Annotations

The Visual B.A.S.I.C. .NET Programming Language supports – I contend – four types of comments.

Readers will be glad to hear that I possess a rigorous and pedantic system for the use of all 4 types,

for different purposes…

1. Ticks: 'Comment

I use these for informal, quick notes.

2. REMs: REM Comment

I use these for formal, properly-worded descriptions, including multi-line planning and

breakdown for how a complex Sub of Function should work.

3. If-False Blocks: #If False Then {LineBreak} Comment {LineBreak} #End If

This is admittedly a sort of hack, but is useful sometimes when I want to type lengthy

comments with many interstitial line-breaks.

4. XML Documentation: ''' <summary>Comment</summary>

This is the most powerful form of comment, providing Intellisense text for the components I

create. For example:

B

81

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

Explanations and Justifications

It is vital to stress the following points regarding the use of comments:

• Comments should not be written to explain what is being done. This much should be obvious

from the code and identifiers; variable names should be chosen to make the source read like a

comment. E.g. It would be mindless and inane to write 'Beeps if the input is nothing

above the line If _Input Is Nothing Then Beep() ; that code is already a very nice English

sentence, and this linguistic register of programming is afforded to me only in Visual Basic .NET. I

know of no other language which provides the same clarity.

• Comments should be written, only to explain why or how a process occurs. For example, I find

this sort of thing useful, at the top of a sizable Function:

These commentary principles will be observable in the forthcoming screenshots of the DocScript

Implementation.

Writeup Segments

The subsequent documentation of §Development makes interspersial use of these boxes, for

particularly important considerations:

Progress Recap: Where am I in the development plan? [Review]

Prototype: This point marks a milestone in the product, which is now capable of…

Structure and Modulatory: This DSI Database is well-structured, because…

Validation: The following ensure that data of the correct variety is present in the …

Testing Table: Does this component function in accordance with the stipulated criteria?

{Yellow Progress Check Boxes, shoring the current line count for the whole solution}

B

82

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

[Stage 1]

Core Interpretation Engine (DLL) Development
(As a reminder, this DLL is the implementee; it contains all the logic needed for parsing, lexing, and

executing a DocScript Program, but not, for instance, implementation-specific user-interface

components.)

Structure and Modulatory: This DLL (DocScript Library) is well-structured, because…

• It implements the principle of pipelining; the output of one operation is the input to the next one.

In the case of DocScript, the pipeline looks like [Source → Tokens → Program → {Execution}]. As I

mentioned back in §Design, that looks like this to an implementer of the DLL:

Normally, pipelining is performed with the pipe operator | . For instance, the Windows® shell

command ipconfig | find "Address" | clip gets the output from systeminfo.exe, pipes it

into find.exe, and thereafter pipes the output from find, into clip.exe. It is a chain of small

programs working together.

• There is a clear tree-like, hierarchical structure, whereby the Solution contains multiple projects,

each of which have several namespaces, which themselves each contain numerous classes

holding a litany of Functions and Statements.

Parser

This sub-section of the DLL lives in the Runtime Namespace, and has the main role of taking in a raw

Source-Code String, to validate, analyse, and derive a series of Tokens from.

The Token Class

It befits me to begin by writing up the Token class, as it was defined in §Design:

'Raw
Dim _Source As [String] = "..."

'Parse
Dim _Tokens As DocScript.Runtime.Token() = _
 DocScript.Runtime.Parser.GetTokensFromSource(_Source)

'Lex
Dim _Program As New DocScript.Runtime.Program(_Tokens)

'Execute
_Program.Run({})

B

83

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

This is the resultant automatically-generated Class Diagram:

Despite being a simple, encapsulate, dictionary-style Class , several stylistically-salient components

are worth herefrom pointing-out:

• I have written a custom Key-Value-Pair Serialisation method, to automate what I anticipate will

become rather a commonplace method amongst Classes and Structures in the Solution. Here's

how it's implemented in the Token Class:

• Type declarations directly relevant to the Token Class are defined as Nested Types within the

Class itself. In this instance, the Nested Types are Structure TokenLocation and Enum

TokenType As UInt16 :

 |

• The Class Members are immutable; once they have been assigned a value by the constructor,

their value cannot be thereafter altered. This is implemented by means of language-level

immutability through the ReadOnly keyword:

B

84

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

This is good practice because it prevents unforeseen post-construction tampering: A Token is

only supposed to represent three data about an occurrence of a character-sequence within

DocScript source – since the character-sequence it represents will never change, it does not

make sense for the members of this corresponding class to change either (wherefore they have

been declared as ReadOnly).

The Parser Module

There is no need to make the Parser object-orientated (i.e having to do (New

Parser()).Parse(_Source) instead of just Parser.Parse(_Source)), which is why I am

implementing it simply as a Module:

Constants

It contains a number of constants needed for the Parsing process…

GetTokensFromSource()

…And the key method is:

Owing to my detailed planning and foresight during §Design, I was able to simply follow my

Pseudocode-English plan for this method. It is implemented as follows:

B

85

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

Modularity and Structure Considerations

To segment this method and make it more manageable and easier to read, I have divided the meat

of the algorithm into these Private Functions within the Parser Module:

AllLineBreaksAreValid_()

BlankOutUnnecessarySourceLines_()

ReplaceStringLiteralsWithSLITs_()

SegmentCleanSourceIntoTokens_()

ReplaceSLITsWithStringLiterals_()

GetTypedTokensFromUnclassifiedOnes_()

Validation

Naturally – in keeping with the nature of a parser – about half of the logic of the parser is just

validation! Here are some of the checks performed:

• Are all Line-Breaks of the CrLf type?

• Do any SLIT-Placeholders appear in the source?

• Are there any Speech-marks remaining, after the SLIT-Stage Tokens are produced?

• Are there equal numbers of opening- and closing-brackets? () [] < >

• Are there equal numbers of Statement-Openings and -Closings? If EndIf …

B

86

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

A considerable proportion of those lines are involved in validation, such as…

Validation: The following algorithm is what I came up with to ensure that there are an equal number

of opening and closing brackets, and that they're in the correct order…

• This is my implementation of the bracket-stack algorithm, which ensures that for each opening

bracket, there is a corresponding closing one.

• For example: ([]) would be valid, whereas ([)] would not be (even though there are the same

number of brackets and squares in the latter).

• This ensures than an expression which is malformed because of bracket misplacement or

mismatch, does not even make it past the parser. This means that by the time the lexer gets hold

of the tokens, it can be much more confident that the expression is well-formed.

Iterative Testing

It's time for the first test of the parser!

Creating the Scratch-Testing Project

I started a new Project in the DocScript Solution for experimentation and debugging purposes. Then I

created a simple Windows-Form to take in some source, and show the segmented Tokens resulting

from that source:

B

87

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

Debugging

On clicking the [Parse] Button – however – I was surprised to see the

application freeze up and nothing happen for a few seconds, and then,

suddenly, the debugging session would Throw a

System.OutOfMemoryException and crash entirely. This (is must be said)

is certainly one of the most exciting exceptions to come across. I knew

that the likely causes were:

• A stack overflow caused by an infinite loop

To examine what was going on more closely, I reproduced the circumstances under which the

OutOfMemoryException had been thrown. I saw this befall in Process Explorer's System-

Information Graph:

 →

B

88

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

I used the Step-Through feature of VS to trace what the loop might be:

I realised that ↓ this ↓ line was being hit…

…Which caused the constructor for DSException to be called, which attempted to Log the Exception,

which couldn't occur because the CurrentLogEventHandler was Nothing , so it constructs a New

DSException to explain this, which attempts to Log the Exception, which couldn't occur because the

CurrentLogEventHandler was Nothing, which then constructs a New DSException , which

attempts to Log the Exception, which it can't because there's no CurrentLogEventHandler…

…And so on… …Recursively… …Forever….

(Or, indeed, until my 16GB of system memory had been expended.)

To fix this (admittedly rather-catastrophic) bug, I changed the DSException to a

System.NullReferenceException , which dosen't forward the Message onto DocScript Logging,

thereby breaking the chain!

I also added a comment in, to indicate this change ↑.

However: There was one more amendment to make; the root cause of this problem had been the

uninitialized CurrentLogEventHandler . I had forgotten to type this line at the start of the

Experimentation Project's effective EntryPoint:

With this addition, the Parser Testing continued, and worked rather well. I tested every possible

eventuality (using many of the data declared in §Design) and made sure to attempt to break the

system. This is an example of destructive testing. I used both source which would be valid, as well as

entirely-erroneous source, which certainly wouldn't be valid DocScript. Of course, the parser is

somewhat dumb, in that it is oblivious to the validity of anything beyond the structure of the

individual Tokens. It does not validate the order or frequency of the Tokens; that's for the next stage

– Lexing.

B

89

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

Prototype: This point marks a milestone in the product, which is now capable of…

• Taking in some raw Source, and thence deriving DocScript Tokens. This is how it appears in the

DocScript.Experimentation project:

• Performing preliminary syntactical validation on the source, including ensuring that the number

of opening- and closing-brackets is the same.

• Ensuring that there is a {LineEnd} appending the source, readying it for the imminent lexing stage.

My custom Exceptions are also making debugging significantly more targeted and direct. I can see,

for example, precisely which method this Exception is coming from, thanks to the integrated

StackTrace:

B

90

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

The Logging with the GUIDefault As LogEventHandler now works well too:

Testing Table: Does this component function in accordance with the stipulated criteria?

I will now test the Prototype Parser against criteria from the §Design, and some new criteria.

Does the parser operate reliably, speedily, and consistently?

Test ☑ Passed?

Raw source is split at the SplitAtChars, and remains

concatenated at WordChars.

Yes;

Tokens are assigned their correct TokenTypes. E.g. < must be

identified as a GrammarChar .

Yes;

DocScript Logging reports the number of Tokens output by the
Parser (GetTokensFromSource()).

Yes;

B

91

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

The Parser detects if there is a mismatch between tokens which
should appear in pairs; it must ensure that for each opening
bracket, statement, or quote, there is a corresponding closing
component. The validation herefor occurs in
ContainsWellBalencedPairs(Of _TItems)(ByVal

_AllItems As _TItems(), ByVal ParamArray _Pairs As

Tuple(Of _TItems, _TItems)()) As Boolean .

Exceptions herefrom are passed down the call stack, until the
user sees some form of message, depending on the DocScript
Implementation being used.

Partially:
Unbalanced brackets <> [] ()

and Statements If While

Loop Function are caught by

the mentioned function,
whereas unbalanced string
literals e.g. """ or """" are

caught be the Token Classifier
instead:

This still catches the Error, and
prevents further stages of
interpretation from getting
confused.

Action to take: Add a note
about this pair-like component
being caught at a later-than-
might-be-assumed stage of the
interpretation process, to the
Solution's Documentation txt.

Justifications for Actions Taken: By documenting the oddity, it can be found by anyone who might

look into why this behaviour occurs. It isn't a large enough oddity to warrant re-writing a component

of the parser, because for the oddity to be noticed, erroneous source is required in the first-place. In

other words, for this problem to occur, there already needs to be something quite erroneous about

the input source code, so restructuring how this downstream problem is handled, would do nothing

to solve the foundational issue.

Wait: Bootstrapping!

Writing the Parser has enabled me to notice a number of prerequisite utilities and components,

which – as I continue development – an increasing number of modules and classes will rely on.

Before I continue, therefore, I will take some time to properly implement each of the following…

Logging

I established in §Design that I would have a CurrentLogEventHandler object; a delegate pointing

to the Function to use for Logging. In addition to this declaration, however, I am also implementing
four BuiltInLogEventHandlers , to make it easy to pump LogEvents out to the surface for
debugging:

B

92

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

I then designed this window, for the GUIDefault As LogEventHandler:

The SubmitLogEvent() method requires all parameters for a LogEvent…

''' <summary>Invokes the CurrentLogEventHandler with the specified Data for the LogEvent. A
lso checks that the CurrentLogEventHandler has been initialised with a Delegate.</summary>
Public Function SubmitLogEvent(ByVal _Message$, ByVal _Severity As LogEvent.DSEventSeverity
, ByVal _Catagory As LogEvent.DSEventCatagory) As LogEventSubmissionResult

…and is somewhat inconvenient to call when one only wants to log a single string with default

Severity and a predefined Category. Therefore, I am also defining some pre-defined QuickLog

Methods:

Custom Exceptions

In the Exceptions Namespace, I have defined the following Exception Types…

B

93

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

I will have to add to these as the Project Develops. The clever thing about them is that they will

attempt to Log whatever the Exception Message is, through DocScript Logging, when Thrown. This

means that I don't need to write something like LogError("Some Error…") : Throw New

DSException("Some Error…") because the latter instantiation of the Exception will automatically

perform the logging with a LogEvent of the Error Severity. Here's how the constructor calls

DocScropt Logging:

KVP-Serialisation

This Module in the DocScript.Utilities Namespace has been written to make it much easier to

consistently write the ToString() methods on Classes and Structures, which serialise Key-Value

Pairs within the object. For instance: Name could be a Key with the Value "Ben" . I have written one

method to output a String…

…And another to output XML via an XElement:

Compiler-Extension Methods

There were a number of common tasks which I had to perform in the Parser's logic (such as

[removing trailing whitespace from a string], [repeating an object N times], or [matching a string

against a Regular-Expression]) which are made significantly more elegant and effortless when

implemented as Compiler-Extension Methods, rather than simple procedural functions.

For instance: Instead of declaring…

Public Function MatchesRegEx(ByVal _StringToValidate$, ByVal _RegExPattern$) As Boolean

…And calling in the fashion…
 If MatchesRegEx(_Token.Value, Parser.Constants.StringLiteralRegExp) …

…I instead declare the method as an Extension, thusly:
<Global.System.Runtime.CompilerServices.Extension()>

Public Function MatchesRegEx(ByVal _StringToValidate$, ByVal _RegExPattern$) As Boolean

And simply call it as if it is a member of the String type:

 If _Token.Value.MatchesRegEx(Parser.Constants.StringLiteralRegExp) …

This reduces intractable layers of brackets like A(B(C(D))) , and also gives a more object-orientated

feel; D.C().B().A() is easier to read.

B

94

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

Progress Recap: Where am I in the development plan? [Review]

• Done: I have written the Parser, and a number of bootstrapping prerequisites to aid in efficient

and robust implementation of the forthcoming stages.

• Next: I will write the lexing system. This is the second of three stages of DocScript interpretation.

Lexing

As a reminder (partly to myself), DocScript Lexing works like this:

• The Tokens generated by the Parser are passed into the constructor to the Program class.

• Inside this constructor, the Global VariableDeclarations and Functions are derived.

• A New DSFunction is constructed for each Function of the Program ; the Tokens for the

Function are passed to its constructor.

• Inside the DSFunction constructor, all the contents Instructions are derived from the remaining

Tokens, in a loop.

• Each IInstruction has a constructor which takes in the Tokens required to construct it.

Expressions

The four Expression Classes (VariableExpr , LiteralExpr , OperatorExpr , and

FunctionCallExpr) are very similar to the eight Instruction Classes, except that they are not

independently valid as lines within a Function. Expressions appear as components of the following

Instruction Types: ReturnToCaller , VariableDeclaration , VariableAssignment ,

FunctionCall , IfStatement , WhileStatement , and LoopStatement (everything except from

DSFunction).

B

95

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

Expression Classes

I have laid-out the DS.L.Expressions.VB File like this:

[Above] Namespace: DocScript.Language.Expressions

[Above] Class: LiteralExpr

B

96

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

[Above] Class: VariableExpr

[Above] Class: FunctionCallExpr

B

97

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

[Above] Class: OperatorExpr

Notably, the constructors to the IExpression types do not take in the Tokens required to construct

each type of expression. This is because it is very difficult to determine what type of expression a set

of tokens represents, just by looking at the tokens in order. At the token-level, it cannot even be

guaranteed that the tokens make up a syntactically-valid expression. If done via the token-accepting

constructors' method, each compound-expression type (OperatorExpr (because of Operands) and

FunctionCallExpr (because of Function Arguments)) would also have to determine the type of its

child expressions. This would be needlessly over-complicated.

ConstructExpressionFromTokens()

For these reasons, I am instead going to use a single function called

ConstructExpressionFromTokens() , which takes in an array of Tokens, and returns whatever the

top-most Expression of the resultant Tree is. I have implemented it thusly:

B

98

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

It relies of these 600 lines of backend functions:

How does that work then?

The basic principle for Expression Construction in DocScript is that a Linear Bracketed Level (LBL) is

recursively produced for the expression. This is a top-level view of the expression, only caring about

the sub-expressions which are connected by operators. Any sub-expressions implicated only by

being arguments to a FunctionCall Expr, or by being components inside a BracketedExpr, are not

visible from the LBL; they are abstracted away. The recursive part comes in here: Each

[BracketedExpr] or FunctionCall() is itself represented as a Linear Bracketed Level. Each LBL can

contain child LBLs of its own.

Once the LBL is produced, it's just a matter of simplifying it to the base-most form (for instance:

[[[3]]] would be simplified to just 3), and then validating it. During the LBL validation, the LBL is

compared against a number of different invalid patterns. For instance {A Binary Operator} followed

by {Another Binary Operator} is an invalid pattern for a DocScript Expression. Detailed and verbose

error messages result from a validation-pattern-violating expression, which is beneficial to the

programmer.

Testing: Example Constructed Expression Trees

Implementing that into a simple [Source → Tokens → Expression] window on the

DocScript.Experimentation project, shows clearly what the expression trees look like for input

expressions:

6 * 4

B

99

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

DS_String_ToUpper("Hello, " & Name)

True ' False | [True ' ¬False | ¬¬¬False]

B

100

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

Debugging

I identified a bug whereby the case of string literals was not being preserved. As can be seen here, I

have 4 case-variations of the string literal "RE", but in the resultant Expression Tree, they are all

appearing in lower-case!

My initial conclusion, was that I must have been unwittingly ToLower() -ing the string literal's value

somewhere in the chain of functions it was being passed around. However, on stepping through

(with F8 in Visual Studio), I realised that what was actually happening, was this:

• One of the very first things the Parser does, is to replace any string literals, with String-Literal-

Indication-Tokens (SLITs). This is done via a regular expression which matches any character

sequence starting and ending with the StringLiteralStartEndChar (as defined in the

language-level constants). The SLIT with which the string literals are replaced takes the form

$SLIT_{Number}$, e.g. $SLIT_0$ for the first string-literal. The original strings are stored in the

SLIT-Table (a List(Of String)), where the index of each String-Literal value is its SLIT

{Number}.

• Much later on during parsing, when it comes to substituting the SLITs for the String-Literals

again, the Microsoft.VisualBasic.Val() function is used, in order to extract an Int32 SLIT-

Table Index, from the SLIT itself. My understanding of this function was as follows: It looks at the

input string, ignores any non-digit characters, and then parses an Int32 from those remaining

digit chars. However, after some quick testing in the Immediate Window in Visual Studio, I

realised that it behaves a lot more inconsistently than I was hoping for. Therefore, I replaces this

call to Val(_SLIT) with the simple LINQ-expression Convert.ToInt32(New

[String](_SLIT.Where(AddressOf [Char].IsDigit))) which I should really have used in

the first place.

B

101

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

• Lesson: BEWARE THE ARCHAIC VB6 FUNCTIONS!

Exchanging the Visual Basic 6 Function for a .NET replacement fixed the problem, so now, the

correct Expression Tree is produced! ↓

The extra line required for that fix accrues to the total of…

Instruction Classes

Of the eight IInstruction -derived classes, four of them ONLY implement IInstruction , and do

not implement IStatement . In other words, VariableDeclaration , VariableAssignment ,

ReturnToCaller , and FunctionCall are just IInstructions, whereas IfStatement ,

WhileStatement , LoopStatement , and DSFunction implement IStatement (and thereby

implicitly also IInstruction) and therefore contain their own child Instructions.

Terminal Instructions

Because the terminal Instructions are the simpler subset, I shall begin with them.

VariableDeclaration

The first is the VariableDeclaration , whose task it is to store a DataType, Identifier, and

(optionally) AssignmentExpression, which will be used during Execution. I implemented the Class as

follows…

B

102

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

…And that ProcessTokensToInitialiseFields() Method looks like this:

Testing

Because both Functions and Global-Variable-Declarations can appear at the top-statement

(program) level, I can test this VariableDeclaration class, by writing a simple Program

B

103

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

implementation:

This – along with a simple testing window in the DocScript.Experimentation project, allows me to see

that Program Construction is working correctly, with just Global VariableDeclarations:

VariableAssignment, ReturnToCaller, and FunctionCall

The other three terminal instructions are fairly simple and similar; they accept Tokens to their

constructors, and call an internal ProcessTokensToInitialiseFields() method. The classes look

like this:

B

104

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

[Above] Class: VariableAssignment

[Above] Class: ReturnToCaller

B

105

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

[Above] Class: FunctionCall

I will only be able to test these three latter terminal IInstruction -Types, when the four

IStatement -Classes have been written (at which point, I shall test whole programs).

Statement Instructions

The principal distinction between the terminal- and statement-Instructions is that the Statement-

Instructions contain a Contents member which represents all Instructions between that start of that

Statement, and its corresponding End{StatementType} Token.

This is how I implemented the four IStatement classes:

The Namespace Structure →

B

106

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

[Above] Module: StatementUtilities

[Above] Class: IfStatement

B

107

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

[Above] Class: WhileStatement

[Above] Class: DSFunction

B

108

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

[Above] Class: LoopStatement

With the 8 different IInstruction-implementing Classes written, I ought to be able to construct a

Program (Instruction) Tree, from some raw source:

Prototype: This point marks a milestone in the product, which is now capable of…

• Using a set of DocScript Tokens (piped in from the Parser) to construct a Program object. This is

how that's implemented in the DocScript.Experimentation project:

B

109

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

• Identifying the DSFunctions and Global-VariableDeclarations of the Program.

• Ensuring that there is exactly one EntryPoint Function (Main) in the DocScript Program.

Testing Table: Does this component function in accordance with the stipulated criteria?

I will now test the Prototype Lexing System against criteria from the §Design, and some new criteria.

Does the Lexing System operate reliably, speedily, and consistently?

Have all edge-cases been accounted-for?

Test ☑ Passed?

A hierarchical Instruction Tree (Program Tree) is produced from
a linear stream of Tokens.

Yes; see previous screenshots

The Lexer can correctly identify where one statement ends and
another one ends.

Yes; see previous screenshots

Where Statements are nested, the lexer unambiguously
determines which tokens correspond to which statement
openings and closings.

For instance, this source…
If (True)

 If (False)

 If (¬False)

 EndIf

 EndIf

 If (¬True)

 EndIf

EndIf

…ought to produce 4 IfStatements, in the structure of one

parent containing two children, and one grandchild.

Yes;

(There are four If-Statements
there)

B

110

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

Execution

The third of the three stages of interpretation is Execution, wherein the constructed Program Object

is executed.

IInstruction.Execute()

The first set of methods to work on, are the implementations of Execute(ByVal

_InputSymTblsState As DocScript.Runtime.SymbolTablesSnapshot) As ExecutionResult .

They look like this:

[Above] Method: VariableDeclaration.Execute()

[Above] Method: VariableAssignment.Execute()

B

111

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

[Above] Method: ReturnToCaller.Execute()

[Above] Method: FunctionCall.Execute()

The last of these .Execute() methods, in FunctionCall , piggy-backs off of the

CallFunctionByName() Method (sounds oddly Win32-like, dosen't it), which provides the following

advantages:

• The same code dosen't have to be re-written for FunctionCallExpr

• The .Execute() methods don't have to care about the difference between calling a

DSFunction, and a Built-in Function; this is all handled by CallFunctionByName() .

B

112

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

IExpression.Resolve()

The IExpression-implementing classes do not have a .Execute() method, because they are not

really Instructions which can be executed on their own. In DocScript, it is not valid to have an

Expression sitting by itself on a line. It must be a component of an Instruction, such as a

VariableAssignment or FunctionCall.

Therefore, the .Resolve() method is used instead. It still returns an ExecutionResult;

Resolve(ByVal _InputSymbolTables As Runtime.SymbolTablesSnapshot) As

Instructions.ExecutionResult . I implemented the Resolve() methods thusly:

[Above] Method: LiteralExpr.Resolve()

[Above] Method: VariableExpr.Resolve()

[Above] Method: FunctionCallExpr.Resolve()

B

113

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

[Above] Method: OperatorExpr.Resolve()

Program.Run()

Finally – with all the components inside a DocScript Program having had their Execute() ,

Resolve() , and Run() methods implemented – I can now write the function that actually runs an

entire DocScript Program.

In essence, all it needs to do is to Execute each of the Global VariableDeclarations, and then

Run() the Main (EntryPoint) Function…

[Above] Method: Program.Run() – Part 1

B

114

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

[Above] Method: Program.Run() – Part 2

Prototype: This point marks a milestone in the product, which is now capable of…

• Executing a Program Object (piped in from the lexing system), including executing each Global-

VariableDeclaration , and then the DSFunction Main.

• Creating a Global SymbolTable at the beginning of execution, and passing the stack of symbol

tables to each statement in the tree of the program, as it is executed.

• Distinguishing between DSFunctions defined in the DocScript Program, and BuiltInFunctions,

defined by DocScript Runtime. This is the Experimentation Form I used to test the BIFs:

B

115

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

Progress Recap: Where am I in the development plan? [Review]

• Done: I have just written the DocScript Library DLL, which contains the logic required to interpret

DocScript Programs.

• Next: I will implement this DLL into the first of three implementations, as was described in detail

within §Design. This first DocScript Interpreter implementation is a command-line one.

[Stage 2]

Command-line Interpreter (DSCLI.EXE) Development
This is getting very exciting! I am nearly able to run the first ever DocScript Program.

Before the logic in the DLL can be used to do this, however, I must in fact implement

the logic into something that uses it.

Analogically speaking, what I have just made is like a cassette tape. Now – in

order to enjoy the must on the tape – I must create the boombox that plays it.

Writing the CLA-Manager

To make the process of understanding command-line input to the DSCLI program significantly easier,

I shall develop a quick command-line argument Manager. It can be found in the

DocScript.Utilities namespace.

It takes in a Key in the syntax: /Key or /Key:Value or /Key:"Value" . The constructor to a

CLAManager then takes in a series of CLA Data, which each correspond to a given (case-insensitive)

Key, and map this key to an Action, to be run if the Key is specified…

Structure and Modulatory: This Implementation is modular and multi-purpose, because…

• The DSCLI binary (an .exe file) can perform different actions depending on the command-line

arguments specified. With /Run , it performs all three stages of interpretation, whereas with

/GetProgramTree , only the first two (parsing and lexing) occur.

• This means that program fits in well with operating system interoperability systems, such as

command-line piping in Win32. The program's output can be passed through different

subsequent programs, and this output can differ depending on the CLAs to DSCLI.exe.

• For example, running the command DSCLI /Run /SourceFile:"HelloWorld.DS" | clip

provides different functionality from the DSCLI program, than in the command dscli /Run

/SourceFile:" HelloWorld.DS" /LogToConsole | more.com (.com is an old Win32

executable format left over from MS-DOS, before .exe became standard.)

• This is convenient because a wide variety of functionality is provided from a singular executable,

which is more portable and manageable than having many different .exe files to all perform

slightly different tasks.

B

116

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

The Surprisingly-simple Implementation

The meat of the CLA-Interpreter comes down to these simple few lines:

{That}, is how easy it becomes to run a DocScript Program, because of all the heavy-lifting being

abstracted into the DLL.

B

117

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

Using the Interpreter

Here are some examples of DSCLI in use…

B

118

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

[Above] Prototype 1 of DSCLI's /Live Mode

Debugging

Before DSCLI.exe behaved as it should, and produced the above screenshots, there

were a number of bugs which I had to correct:

Incorrect Program XML Serialisation

When using the /GetProgramTree CLA, I noticed that the XML tree was not correctly formed; notice

how the <VariableDeclaration> is not within the <GlobalVarDecs> Node…

To mend this, I simply needed to add the GlobalVarDec nodes to <GlobalVarDecs/> , instead of

<Program/>…

B

119

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

Console closing immediately

When creating an .lnk file to the DSCLI.exe binary, with a set of command-line arguments to run a

*.DS file, it was annoying that the console window would close, before I (and therefore any future

user of the application) would have a chance to see what the output from DSCLI – and thereby also

the DocScript Program – actually was.

To fix this, I have added a /PromptBeforeExit CLA switch (flag). This causes the interpreter to wait

for the press of the [Enter] key, before exiting and therefore dismissing the Console window:

As can be thence seen, this requests the keypress, ↑ even if there is an Exception ↑.

Prototype: This point marks a milestone in the product, which is now capable of…

• Parsing and understanding a series of Command-Line Arguments to the DSCLI binary, and

performing one of several different actions, depending on the CLA. For example:

• Executing, or generating the XML-Program-Tree for, a DocScript Program – including requesting

Input and providing Output, via a Win32 Console.

• Displaying clear error messages, resulting from Exceptions raised during the Interpretation

process. For instance:

B

120

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

Iterative Testing

Within §Analysis, I listed a number of types of test, along with example testing data, which I could

use to test the product once implemented. I shall now make use of this testing plan…

Assert-style Test ☑ Passed?

Input and Output: Erroneous DocScript source
can be taken in, but the interpreter determines
that there is something wrong, instead of
continuing and crashing.

Yes; see previous screenshots

Input and Output: Standalone Expressions can
be taken in in the DSCLI /Live mode, and are

evaluated using the current Symbol Tables.

Yes; see previous screenshots

Usability: A high degree of verbosity is present in
the error messages, leading to an unambiguous
prognosis of whence the error came.

No; having conducted this test, I realise that it would
be nice to see a StackTrace in addition to the
Exception Message. Therefore, I shall change from
using Exception.Message , to

Exception.ToString() , which includes the

StakTrace, like this:

(The at *() strings on the bottom represent the

call stack, and its functions)

All of the "Standalone Expressions" and
"Command-Line Arguments" from the Testing
section of §Design, can be run successfully.

Yes; see previous screenshots

Justifications for Actions Taken: By printing the entire stake trace, it is significantly easier to see

exactly where the problem occurred in the code, and what state the Win32 Process was in when the

B

121

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

Exception was Thrown. Here is an example of a more widescreen StackTrace:

[Stage 3]

Windows IDE (DSIDE.EXE) Development
Progress Recap: Where am I in the development plan? [Review]

• Done: I have now written the first Interpreter Implementation, DSCLI.EXE . Initial testing has also

been performed on it.

• Next: I will implement this DLL into the second of the three implementations, as was described in

detail within §Design. This implementation is a graphical Windows Program.

WPF and XAML

The moderately complex design requirements of the Windows IDE mean that I am

best off using WPF instead of Windows Forms for this exe. This requires creating the

markup for the User-Interface in an almost HTML-like derivative of XML, called XAML

("Zamol").

This is an overview of the ↓ Main Window's XAML ↓ …

B

122

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

…Which produces ↓ this ↓ component:

Keyboard Shortcuts

To aid in the usability of the application, I have added the following Keyboard Shortcuts:

I have also added ToolTips to the Buttons which have corresponding Keyboard-Shortcuts, like so:

 ← The ToolTip label clearly shows the shortcut-key

B

123

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

Implementing the DocScript DLL

The code-behind for the [Run (F5)] Button looks like this:

Notably, this is done in a separate, background Thread. This means that the user-interface remains

responsive throughout interpretation (and a number of other operations). In addition, the operation

can be cancelled at any time, by means of the [Cancel] Button, which appears only during a

Background Operation:

Standalone Expression Resolution Utility (DSExpr.EXE)

I also wrote the DSExpr executable to accompany the IDE:

B

124

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

It does not call Program.Run() , but rather, IExpression.Resolve() :

It is a simple Windows Forms program, and the Main Window looks like this:

Using the Interpreter

Here are some examples of DSIDE in-use…

(…After the implementation of AvalonEdit as described below…)

B

125

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

[Above] DSIDE running a mathematical program to compute Primes!

B

126

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

[Above] The DSIDE ViewPlus Features

Debugging

Before DSIDE.exe behaved as it should, and produced the above screenshots, there were

a number of bugs which I had to correct:

Syntax-highlighting Nightmares

Using simply a WPF RichTextBox gave me no end of problems with attempting to highlight certain

selections of the text ("Runs", as they're called) in a specified colour. This was in part because of the

insertion of paragraph breaks instead of line breaks whenever the enter key was pressed, and in part

because the RichTextBox was doing nothing to prevent any form of rich text from being inserted into

the document. Images, COM Objects, and even Adobe Photoshop documents could be pasted-in,

and these would rather severely mess-up the highlighting offsets.

I frequently ended-up with aberrations like this:

I was getting quite frustrated and wasn't making progress, so reached the following conclusion:

The purpose of this project wasn't to implement a syntax-highlighting source

editor from scratch; it was to build a Programming Language. I will struggle to

rationalise dedicating so much time and energy to something that isn't meeting

B

127

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

the initial goal directly. So: I don't need to reinvent the wheel; I'm just going to

use an open-source extensible RichTextBox Control for WPF, with Syntax-

highlighting, Line Numbers, and indentation folding built-in; AvalonEdit. These

features will better meet the Stakeholder requirements, and save me time! It's a

Win-Win.

This new Text-Editing Control (AvalonEdit's TextEditor) looks like this:

B

128

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

The IDE now has Line-Numbers, reliable syntax-highlighting, and even a ↓ mini-intellisense ↓…

I implemented the syntax-highlighting through an XSHD (eXtensible Syntax Highlighting Definition)

file, which looks like this:

B

129

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

Null-Program Trees

Before a Program has been constructed during the lexing stage, the [Generate Program Tree] Button

is still visible:

This means that when the button is clicked, an Exception is Thrown, informing the user that

accessing the Cached-Program Object resulted in a NullReferenceException :

Although this is admissible, it would be better to prevent this scenario from occurring, by design. To

this end, I shall alter the DSIDE program to disable the [Generate Program Tree] Button, until a

Program has actually been cached:

 ← The Button is now disabled.

This is the line that enables the button, after a successful call to Program.New() :

B

130

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

While Loop Variable Scope

I then discovered another problem: In all programming languages I've ever used, each iteration of a
while loop has its own declarative scope, in DocScript called a SymbolTable. This means that when
running the program…

…One would expect to infinitely be asked "Enter your Age", and for the _Age to be Output() again.

However, because I've never built a full procedural Programming Language before, I didn't actually
cogently conceptualise that each iteration of a while loop needs to start with a blank SymbolTable.
At the moment, a Statement-local SymbolTable is created at the start of the WhileStatement 's

Execute() call. I need to add in a line to reset – as it were – this SymbolTable after each Iteration!

(…This also applies to the LoopStatement)

Embarrassingly, I had to remind myself of whether or not a Variable Declared inside a While
Statement is visible from the expression of the While Loop, in normal Programming languages. To
this end, I wrote a little test in Visual BASIC .NET:

From this test, I am concluding that the SymbolTable… …Actually wait; I need to do one more test:

Okay; now I'm saying definitively that the WhileStatement (or IfStatement)'s local SymbolTable
needs to be reset after the condition is resolved and before the contents are executed.
I implemented these changes accordingly in the DocScript Library DLL.

B

131

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

Prototype: This point marks a milestone in the product, which is now capable of…

• Highlighting DocScript source with the XSHD markup I wrote, and performing standard text-

editing tasks including {New, Open, Save, Save-As, Cut, Copy, Paste, Undo, Redo, Find, Zoom-In/-

Out}:

• Performing DocScript Program Analysis tasks, such as displaying a Program Tree

• Providing helpful development features, such as DocScript-Intellisense, and the BIF Explorer:

B

132

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

• Being able to launch the DSExpr.exe utility, for easy standalone expression resolution:

Progress Recap: Where am I in the development plan? [Review]

• Done: I have just written the Windows IDE implementation of DocScript.

• Next: I will implement this DLL into the third of the three implementations, as was described in

detail within §Design. This is the web-based interpreter system.

Iterative Testing

During the §Analysis, I listed a number of types of test, along with example testing data, which I

could use to test the product once implemented. I shall now make use of this testing plan…

Assert-style Test ☑ Passed?

Input and Output: Erroneous DocScript source
can be taken in, but the interpreter determines
that there is something wrong, instead of
continuing and crashing.

Yes; see previous screenshots

Input and Output: Standalone Expressions can
be taken in in the DSExpr.exe utility, and are

evaluated using the current Symbol Tables.

Yes; see previous screenshots

Usability: Common tasks can be performed
quickly via Keyboard shortcuts, and it is clear to
discover which keyboard shortcuts are available
in the product.

No; Although there are some keyboard shortcuts
available for basic tasks such as Run (F5), most of
the buttons still have to be clicked with a mouse. In
addition, the Ribbon used in the WPF window does
support Key Tips (the sort seen in MS Word when
the [Alt] Key is pressed), but I have not made use of
these.
Therefore, I will now add a more comprehensive
implementation of shortcuts for all common
functions, including the launching of the Program
Analysis dialogs (ExeRes Explorer, and ProgTree

Visualiser).

In addition – to enable easy discovery of which
shortcuts are linked to which buttons, I have added
ToolTips to the buttons, thusly:

B

133

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

All of the "DocScript Source" from the Testing
section of the §Design, can be run successfully.

Yes; see previous screenshots. This included the
"Simplest-Possible DocScript Program", which
returned the Default Exit Code of 101, because there
is no Exit-Code provided by the DocScript Program.

Justifications for Actions Taken: By adding a greater number of Keyboard Shortcuts, the application

becomes easier to use, as these constitute a usability feature. In addition, by clearly and consistently

labelling which Shortcuts can be used for each Button, the user is able to rapidly learn them.

Some of the shortcuts are – I feel – so important, that they ought to be even more overtly shown to

the user. For example, the [Run (F5)] Button has its shortcut hard-coded onto the Button Text,

because this has to be considered the most-clicked button of the entire application, so it can

therefore save the most time by having a Shortcut.

 [Stage 4]

DocScript Interactive (DSI) Development
Interactive, is the DocScript component which can host real-time, multi-client

execution sessions for a DS Program. Several clients can tune-in to the execution

session, with each client being able to see outputs and LogEvents. When Input () is

required by the DocScript Program, all clients have the chance to provide an input

response, and the first client to do so, has their response accepted by the session.

Writing the API

The Server-side API will use XML, and will follow the API-Specification which I delineated in the

§Design.

Explanation & Justification: XML is a commonplace and standardised serialisation format, and befits

this project far better than JSON or CSV/TSV. In addition, XML-Literals are built-in to the Visual BASIC

.NET Programming language, in which I am writing the server-side API. This makes it quick and terse

and efficient to prepare API responses. JSON is designed to represent Key-Value-Pairs, and does not

support Namespaces, Schemas, Comments, or tree-based data representation; it would be a poor

choice for any project, but especially one that necessitates the analysis of individual layers of the

development stack (e.g. exploring raw, plaintext API responses), such as DocScript.

Here is the style of API-Response I have decoded to use:

B

134

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

↑ Explanation & Justification: This API schema provides the HTTP status code not only in the HTTP

response headers, but also as PlainText in the XML. This helps with debugging!

At this point, it is just a matter of following the API specification from §Design, and implementing

each of the EndPoints…

↑ These are the first 3 of 15 EndPoints in the DocScript Interactive API.

Validation: The following features ensure that API requests are valid…

• Required URL QueryStrings are checked-for with my

EnsureTheseQueryStringsAreSpecified() Function.

• The Syntax for the XML Response is made uniform and consistent, by routing the response data

through an instance of the APIResponse Class, and then calling .Send() thereon.

• QueryString Arguments such as the ?ESID are validated against regular-expressions, so that no

peculiar characters make it past the API and into deeper parts of the Back-End such as the

DataBase.

B

135

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

Implementing the DocScript DLL

This call to logic in the DLL occurs within the DSIExecutionSessionWorker assembly.

This assembly is the DSIExecutionSessionWorker.exe file, which is instanciated by the Server-Side

when the InitiateSession API-EndPoint is called. The Server then spins-up an ESWorker

executable, like this:

 ← One ESWorker per DSI-Session

In the command-line arguments to an ESWorker, the ESID is passed in the form /ESID:"*" . This

uses the same CLA-Manager which I wrote for DSCLI earlier.

Prototype: This point marks a milestone in the product, which is now capable of…

• Accepting a call to /API/Interactive/?Action=InitiateSession&ESID=* to start an

Execution Session being hosted on the DSI Server.

• Instantiating a new ESWorker Executable as a child-process of the IIS Worker Process w3wp.exe .

• Responding to the client requesting the initiation, with a well-formed API Response and HTTP

status code.

B

136

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

SQL Server Interaction

I wrote a Class called SQLQueryRunner, to simplify my use of SQL. It is called like this:

…With the Code-Behind…

This is the Execution Plan for the SQL SELECT Statement I am using:

B

137

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

Prototype: This point marks a milestone in the product, which is now capable of…

• Dependably and reliably running an SQL Query on an SQL Server (for the testing, this was simply a

copy of SQL Server Express 2008 R2 on my development workstation)

• Retrieving the results from the database in a DataTable , and outputting these onto a user-

interface.

• Completing all of this in under a millisecond (Thanks x86!)

The DSIExecutionSessionWorker.exe program implements this same SQLQueryRunner Class, and

uses it to write Output-Events to the Database, and also to write Input-Prompt to the Database. It

then waits a finite length of time for an Input-Response to be inserted into the database (submitted

by a DSI Client via /API/Interactive/?Action=ProvideInputResponse), and then reads this

response value, and uses it for the continued execution of the DocScript program.

Here is how that's implemented:

…And…

B

138

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

Database Structure

I wrote these SQL files to build the DocScript Interactive Database…

The _CreateEntireDB.SQL file automatically creates all the required (initial) tables, and the

database. It also contains instructions for DSI Setup:

B

139

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

[Above] _CreateEntireDB.SQL

Structure and Modulatory: This DSI Database is well-structured, because…

• The tables comply with 1-NF and 2-NF standards; the ProgramName of the UploadedPrograms

Table appears as a foreign key in the ExecutionSessions Table:

• It is easy to perform a conditional selection on either the SQL Server, or the Web Server, via

either TSQL or .NET respectively.

B

140

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

• One table is created for each type of Event, for each Execution-Session:

This means that the data are neatly segmented into different tables, and can be easily selected

individually or in groups.

I have also enforced a validity and consistency across the database, simply in my choice of DataTypes

for the different fields…

Validation: The following ensure that data of the correct variety is present in the SQL Tables…

• UploadedPrograms\ProgramName is varchar(100)

• ExecutionSessions\ESID is varchar(100)

• ExecutionSessions\State is varchar(100)

• ExecutionSessions\ProgramName is varchar(100)

• {ESID}_LogEvents\Severity is varchar(100)

• {ESID}_LogEvents\Category is varchar(100)

• The relevant fields in these tables are declared NOT NULL , to protect against

NullReferenceExceptions.

• VARCHAR(100) means that ONLY ASCII characters are valid, and only 100 of them at that.

Therefore, just in the choice of datatype, I have already protected the system against strange

Unicode escape characters, or unbreakable spaces, or the backspace character-code etc.

B

141

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

Client-side Pages and Scripts

The client's web browser – of course – will never actually see any of the ~8,000 lines of script

forming the API and Database. I will now write client-side pages (HTML and CSS) and scripts

(JavaScript), which the client's browser will render.

I slightly re-thought how the input system ought to work on the client-side:

I finalised my choice on frameworks used to style the webpages, and have decided to use Bootstrap,

because is very widely-documented, and has good cross-browser compatibility.

This is what client-facing pages look like after writing the markup herefor…

B

142

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

B

143

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

[Above] The DSInteractive ESParticipant Client page

B

144

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

This is what the Code-Behind looks like for my HTML's general structure:

Prototype: This point marks a milestone in the product, which is now capable of…

• Displaying a user interface to the user, with the correct buttons and labels for each component.

• Running JavaScript initiated by components of the page via HTML onclick="" or onload=""

attributes; this is the start-up Console-Banner for instance:

• Responsively scaling to resizing of the browser window, and displaying well and clearly on mobile

devices whose displays are taller than they are wide.

• Performing server-side HTML-via-ASPX compilation for the pages which require QueryStrings. For

example, ESParticipant.ASPX must be passed a ?ESID=* QueryString.

Scripting: Linking the Back- to the Front-end

The JavaScript has the role of making requests to the API, from the client- to the server-side. These

scripts are never actually seen by the user, but control the application web page, including

programmatic user-interface functionality.

B

145

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

Structure and Modulatory: This Client-side JavaScript is well-structured, because…

• I have segmented the logic into a number of different *.JS Files. Some of these (including jQuery

and SweetAlert, are not my source code, but rather, standard Webpage JavaScript Libraries).

• I am injecting the script files into each HTML page, by a Server-Side Compiler-Extension call to

Response.GetScriptAndCSSImports() :

I implemented that Function thusly, using an XML Literal:

• I have written my own Utilities.JS JavaScript Library file, which is structured in a modular and

reusable fashion; the file defined a JSON object window.Utilities , whose members are

functions.

B

146

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

The bulk of the scripting can be found in the AJAX.JS File, which contains functions which perform

requests for Asynchronous-JavaScript-And-XML…

…And further down the file…

B

147

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

Progress Recap: Where am I in the development plan? [Review]

• Done: I have just written the Web-Based (Interactive) implementation of DocScript, which

supports real-time, multi-client execution sessions.

• Next: I will perform some more thorough testing of different DocScript programs. This is now

possible, because I have implementations of the Interpreter which can be executed directly. (I

have the EXEs which invoke the logic within the DLL)

Iterative Testing

During §Analysis, I listed a number of types of test, along with example testing data, which I could

use to test the product once implemented. I shall now make use of this testing plan…

Assert-style Test ☑ Passed?

Input and Output: Erroneous DocScript source
can be taken in, but the interpreter determines
that there is something wrong, instead of
continuing and crashing.

Yes; see previous screenshots

Input and Output: API Calls can be accepted by
the server, and they are validated syntactically
and logically for consistency and sense. This
includes the

Yes;

Usability: The database can be managed via the
web application, instead of having to perform
operations via ssms (SQL Server Management

Studio). (i.e. there should be a button in the
web interface for deleting an Execution-
Session, instead of having to delete the records
and tables from the database directly.)

No; There is not a comprehensive array of buttons
available for every reasonably-expectable database
interaction function yet.

Because of this, I will now implement these extra
buttons:

• [Delete] for an UploadedProgram

• [View] for an UploadedProgram

• [Reset to Ready] for an ExecutionSession

B

148

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

All of the "DocScript Source" from the Testing
section of §Design, can be run successfully.

Yes; see previous screenshots.

This included the "CEPClient.DS" Sample Program,
which acts as a keep-alive, so that incoming packages
of JavaScript can be executed, for as long as the
session is needed.

This is incidentally how the Mass-Bluescreen
demonstration from the DS3Min Video was
orchestrated.

Justifications for Actions Taken: By adding these additional Buttons to the Web Interface, the user

can more quickly delete the ExecutionSessions and UploadedPrograms. Whilst using ssms directly

does offer more control, it is not necessarily an approachable tool for newcomers, and teachers

hosting DSI in their classrooms.

[Stage 5…]

Whole-Program Testing
With all the DocScript Implementations themselves roughly at an RC0 stage (Release Candidate

Zero), I shall now test the DocScript Interpretation Engine with some real-world programs!

As I make changes to the Core Interpreter DLL (e.g. because I discover a bug, or wish to add a

feature), they will instantly be reflected in each of the Implementations too, because building any of

the implementation projects will first compile the Library DLL.

British Informatics Olympiad Question

Because this year's BIO is only a week away, I thought I'd set myself the challenge of using DocScript

to compete in it. This would go some way to proving that the language isn't just a toy or gimmick,

but can be used for important algorithmic problem-solving too! This was my entry:

B

149

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

[Above] DocScript Function Main()

[Above] DocScript Function GetZeckendorfRepresentation()

[Above] DocScript Function GetLargestFittingFib()

B

150

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

[Above] DocScript Function GenerateNFibs()

[Above] DocScript Function GetNthFib()

(These screenshots are all from the DocScript Windows IDE, so also serve to show that the syntax-

highlighting thereof is effective…)

Review

For this question in the BIO, I miraculously managed to score full-marks with this DocScript Program!

What's more:

B

151

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

• All the test-cases were executed in under a second (∴ the language is fast)

• The interpreter never crashed (∴ the language is stable)

• Tests could be run with ease, and in quick succession, owing to the inputs being provided via

command-line arguments; on the press of the up-arrow in the console window, I could instantly

run exactly the same script, just with different CLAs (∴ the language is easy-to-use)

Primes-Below-100-Base-2-To-32 Example

At the very start of §Analysis, I proposed that the programming language being developed herein

ought to be able to tackle the following problem:

" A user wishes list the prime numbers below 100, in each base from 2 (Binary) to

32 (Duotrigesimal)"

To resolve this project in a gratifying, cyclical manner, I will therefore use DocScript to actually write

this program. Here it is:

#PrimesBelow100_Base2To32.DS

#Brief: "A user wishes list the prime numbers below 100, in each base from 2 to 32"

Function <Number> Main (<String@> _CLAs)

 #To be saved to an Output File:

 <String> _AllPrimes_InAllBases

 #Up to 97:

 <Number@> _Primes : GetPrimesBelow(100)

 #For each Base {2...32}

 <Number> _HighestBase : 32_10

 <Number> _CurrentBase : 2_10

 While (Maths_LessThan(_CurrentBase, _HighestBase + 1))

 _AllPrimes_InAllBases : _AllPrimes_InAllBases & "Base=" & _CurrentBase & ","

 #For each PrimeTerm {0...100}

 <Number> _HighestPrimeTerm : DS_NumberArray_Length(_Primes)

 <Number> _CurrentPrimeTerm : 0

 While (Maths_LessThan(_CurrentPrimeTerm, _HighestPrimeTerm))

 #Output e.g. "2,"

 _AllPrimes_InAllBases : _AllPrimes_InAllBases & [DS_Number_ToBase(DS_NumberArra

y_At(_Primes, _CurrentPrimeTerm), _CurrentBase) & ","]

 _CurrentPrimeTerm : _CurrentPrimeTerm + 1

 EndWhile

 _AllPrimes_InAllBases : _AllPrimes_InAllBases & Const_CrLf()

 _CurrentBase : _CurrentBase + 1

 EndWhile

 File_WriteText("PrimesBelow100_Base2To32.CSV", _AllPrimes_InAllBases, False)

 Return 0

B

152

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

EndFunction

Function <Number@> GetPrimesBelow (<Number> _NumberOfPrimes)

 #A prime number is: a whole number [greater than 1] whose only factors are [1 and

itself]

 <Number@> _CollectedPrimes

 <Number> _IterationsToPerform : _NumberOfPrimes

 <Number> _CurrentIteration : 2

 While (Maths_LessThan(_CurrentIteration, _IterationsToPerform + 1))

 If (IsAPrime(_CurrentIteration))

 _CollectedPrimes : DS_NumberArray_Append(_CollectedPrimes, _CurrentIteration)

 EndIf

 _CurrentIteration : _CurrentIteration + 1

 EndWhile

 Return _CollectedPrimes

EndFunction

Function <Boolean> IsAPrime (<Number> _Test)

 <Number> _I : 2

 While (Maths_LessThan(_I * _I, _Test) | [[_I * _I] = _Test])

 If ([_Test % _I] = 0)

 Return False

 EndIf

 _I : _I + 1

 EndWhile

 Return True

EndFunction

That program generates a simple .csv file, which, when viewed in Excel with some conditional

formatting, produced this rather fascinating result:

[↑ DocScript produced these data ↑]

B

153

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

Review

What that graphic essentially shows, is that the value compositions in essence cascade down and

along the prime numbers. More importantly though: what this test and example program have

shown, is that DocScript can reliably, consistently, straightforwardly, and (perhaps surprisingly)

rapidly interpret real programs to produce real, palpable results. The test has therefore been a

success, and it is almost something of a shame that there wasn't another calamitous – albeit

entertaining – failure, for me to write about herein!

Improvements to make, revealed by the Tests

Although the programs ran faultlessly, I did notice that it would be worth making the following

improvements and additions:

• A greater number of BuiltInFunctions would have been useful in some instances. For

example, instead of having to write Maths_GreaterThan(4, 5) | [4 = 5] , it would

admittedly have been easier if there were a singular BuiltInFunction available to act as a >=

operator; Maths_GreaterThanOrEqualTo(4, 5) . Therefore, I am adding a new series of BIFs,

to make common tasks even more easy. These include: DS_*Array_Last() ,

DS_*Array_First() , File_Create() , File_Delete() , Maths_GreaterThanOrEqualTo()

and Maths_LessThanOrEqualTo() .

• A "Live" mode for the command-line interpreter (DSCLI.EXE) would also have been useful, to

enable me to test single lines of DocScript, during the development of a larger Program.

Interpreted languages such as Python (which – it behoves me to say – I abhor) have such a "Live"

feature, in the form of "interactive mode" (not to be confused with DocScript Interactive, the

web-based system, which is something quite different).

Because I have written DocScript to be extensible, adding this Live feature to DSCLI is not too

difficult at all; the executable shall simply take in an additional optional command-line argument

/Live , which calls EnterDSLiveSession() , which infinitely loops, asking for a line of DocScript,

executing it, and re-applying the resultant symbol-tables-state to a local variable herefor. I

managed to implement the Live mode in under 100 lines. Here it is in-action:

B

154

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

(As can be seen by the introduction text for DSLive, I also added ?{Expr} expression-resolution,

and !{Meta} meta-commends, to make the Live feature more user-friendly and direct.)

• I could have done with a means of viewing which Built-In-Functions were available in the

current ExecutionContext . I am therefore adding a "Explore Built-in Functions" button to

DSIDE. It brings up the following window:

• There are also a few user-interface components to touch up; I shall add some ToolTips in the

DSExpr (DocScript Standalone Expression Resolution Utility) program…

B

155

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

…as well as some zoom and other graphics controls for the Windows IDE, using Matrix

Multiplications:

These features are intended to improve usability.

(…Obviously not all of that code is here in this document; that would take over 2 reams of paper…)

B

156

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

 […Stage 5…]

Scenario-based Testing
Here, I enact some of the stakeholders' scenarios discussed in §Analysis, and evaluate whether or

not the software I have built fares well when used in these situations.

Remote Command-line Usage

Scenario: There is a terminal server and a client workstation on the same LAN. The user of the

workstation wishes to use DocScript (via the command-line) running on the Server, but from the

Workstation's Console.

How it's done: Of the four common ways of getting a remote command-prompt to another

computer (TELNET, PowerShell Remoting, PsExec, and SSH), PsExec can be considered the easiest, as

it requires no setup on either the client or server. To initiate the remote DocScript session, the user

at the Workstation types:

PsExec.exe \\ServerHostname -u Domain\Username -p Password DSCLI.EXE /Live

I tested this with the interpreter running on my Latitude (acting as a server), and connecting to it
over PsExec. I was then able to enter DocScript Instructions at the remote client computer (in this
instance running Windows 2000) and type commands which were executed on the Server. The
resultant output text was then sent over the network back to the client, and displayed.

DSCLI.EXE running on the Latitude: PsExec connecting to the Latitude Server:

Review and Improvements Herefrom

• IL-Merging: It would be nice to not have to carry around two files, in order to use the supposedly

simple command-line interpreter. The two files required at the moment are DSCLI.EXE and

DocScript.Library.DLL . However, I can merge the underlying .NET MSIL Code from inside

both binaries, into the same binary. This would mean that the user would only need to worry

about the presence of a singular .EXE File. To achieve this, I simply run ILMerge.exe thusly:

ILMerge.exe DSCLI.exe DocScript.Library.dll /out:ILM_DSCLI.exe

• A pre-defined .VBS file for easily initiating a remote DocScript session might be useful for some

users who struggle to remember the syntax for PsExec. It could ask for the Server Hostname via

file://///ServerHostname

B

157

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

an InputBox , like this:

Administrative Scripting

Scenario: A network administrator wishes to create a quick script, to create 30 new user accounts on

the domain, from a text file of names.

How it's done: The Windows IDE would be best-suited to this task, what with the Syntax-

Highlighting, Program-Analysis features, and File-Interaction tools. The script might look something

like this:

B

158

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

Review and Improvements Herefrom

• Array Iteration: It would have been useful to have an Array-Iteration Code-Snippet built-in to

DSIDE, because it is a very common task. I shall therefore add this feature:

• A Find Dialog: It would also be very useful to be able to have a "Find" dialog for the Text Editor,

especially for highlighting identifiers which occur multiple times in the program. This feature is

actually built-in to AvalonEdit, so I have just added a button to activate it:

Mathematical-Expression Resolution

Scenario: An avid mathematician wishes to evaluate a series of mathematical expressions. He

dosen't want to write an entire DocScript program, if he dosen't have to.

How it's done: DocScript supports two means of satisfying this need; DocScript-Live, and the

DocScript Standalone-Expression-Resolution-Utility. Since the latter is written especially for this

purpose, let's use it. Here's an example:

B

159

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

[Above] A Demonstration of DSExpr.exe

Review and Improvements Herefrom

Resolution Window Improvements: It would be useful to be able to quickly dismiss a resolved

expression by simply pressing the enter key. The Result would also benefit from standing-out more

from the background of the window. I have therefore altered the window thusly:

Interactive Multi-Client Execution

Scenario: A teacher has written a program, which she wishes to show her class. She wants all

students to be able to participate in the execution of the program, in real-time. She wants specific

students to enter input responses at given points during program execution.

How it's done: DocScript Interactive provides precisely this functionality. Here are the steps taken to

configure and host the Execution-Session…

B

160

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

1. Click "Upload Program", type-out or drag-in a DocScript Program, and click "Upload":

2. Create an Execution-Session for the Uploaded-Program with the [+ New…] button:

3. Get any clients (who want to participate in the session) to wait for initiation of the session

on the landing-page, accessible via the [+ Join…] button:

4. Initiate the session from the ESManager page from which it was created, and all waiting

clients will immediately begin to receive Execution-Session Events:

B

161

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

Review and Improvements Herefrom

CEP and Program Deletion: It would be useful to be able to delete Uploaded-Programs and CEPs,

from the web interface, after they have been uploaded. At the moment, this has to be done from

ssms.exe , directly in the database. Therefore, I have added the HTML components, JavaScript AJAX

Functions, and Server-side API EndPoints necessary to perform the deletion of both of these types of

DSI Objects, from the Database:

[…Stage 5…]

Unit-Testing
It would be more efficient to test many parts of the DocScript Solution via Unit Tests. These are

more repeatable, consistent, and automatic, than the scenario-based or whole-program tests. If I

cause an unintended side effect by changing one function, and this impairs the operation of another

function, then the side-effect will clearly show up in the Unit Test results. Unit tests are particularly

effective when there is a process which should take in a known input, in order to produce a known

output. It would – for instance – be very difficult to write a Unit Test for a Function like

GetRandomNumber() , but very easy for something like Add(A, B) . The unit tests for the entire

solution can be run regularly, to ensure that no new additions and modifications have any side-

effects on old parts of the solution, for which Unit Tests have been written.

As an example, the GenerateUniqueString() method (used to avoid name-collisions for Execution-

Sessions in DocScript Interactive) should always produce the output "PROGRA0" , when given the

Inputs {"PROGRAM"} and "PROGRAM" . (The parameters are [An array of already-taken strings] and [a

seed, off of which to base the new, unique string].)

B

162

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

To create the Unit Test, I shall simply [Left-Click] → [Create Unit Tests…]

This is what the Testing-Method looks like…

…And when I run the Test, I can see that the method works as I intend:

B

163

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

[…Stage 5]

Stakeholder-Testing
Though, admittedly, I have to some extent pandered to

my own eccentric creative whims in the development of

this product, it is ultimately the Stakeholders, for whom

this programming language system has been designed. I

did a great deal of investigation at the beginning of the

project, into what the needs of these stakeholders were.

To be rather summary, these needs were:

• Keep it simple – any good teaching tool ought to be easy to learn and use

• Enforce features found in more advanced higher-level languages, such as: DataTypes,

Operators, Procedural Statements (while, if), functions or encapsulative units, built-in

libraries or functions

• Having the ability to use the system on a wide variety of different sorts of computer

systems (differing architectures and operating-systems)

• "Being able to get a lower-level view, of a high-level script you’ve written"; program

analysis tools

• Being able to evaluate stand-alone expressions quickly and conveniently

• Interoperability with existing commonplace programming systems, such as the input of

command-line arguments, and output of an exit code

Stakeholder Feedback

I sent an Email (with the DocScript binaries attached) to the 4 primary stakeholders, asking the

following of them:

• First impressions?

• Were you – without additional guidance – able to navigate through the program, and

find the features you were looking for? (Usability)

• How stable was the software?

• How quickly were you able to get up-and-running?

• Improvements?

The gist of the responses was as follows: They generally found the product easy-to-use, performant,

and feature-rich. Subject to particular adulation, were the following features:

• The DSCLI /Live mode. Respondents actually indicated that this was probably more

convenient for expression evaluation, than the DSExpr program which has been

specifically designed for this purpose, owing to the inline and single-window nature of

the console application:

B

164

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

↑ One of the stakeholders, decadently caught using Windows 10. (Fortunately, DSCLI

still worked!)

• The Program-Analysis dialogs in the IDE. These provided a more in-depth means of

understanding what the interpretation engine actually sees, from the typed-out source:

B

165

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

• The ability to create ad-hoc ExecutionSessions from the UploadProgram page in DSI:

(This is easier than manually creating an execution session from the ExecutionSession-

Manager page.)

To desist from any more self-flattery however, it behoves me to enumerate – in some detail - the

shortcomings pointed out by the stakeholders:

• Oliver: "When I click on a Built-in Function in the BIF Explorer Window, it dosen't do

anything. I would expect it to do something!" Remedial Actions Taken and Justification:

I added an EventHandler which inserts a TemplateCall of the selected BIFs, into the

TextEditor of the Main IDE Window. The TemplateCall is a new Property on the BIF Class,

included specifically for this problem. E.g. for the Output BIF, the TemplateCall would

look like Output(_Text) . The BIFs Window also now reports how many BIFs have been

inserted:

• Kiran: "I wanted to try out hosting DSInteractive on my personal machine, but there was

an IIS Web.config error with the WOFF MIME Types for the Bootstrap Fonts – what's that

about?" Remedial Actions Taken and Justification: This occurs because the Operating

System I was developing on was running Server 2008 R2 – which dosen't include the

WOFF MIME Type in the base-most Web.config – whereas this stakeholder was running

Windows 11 Enterprise, which does include this as a default MIME Type. I can't think of

any simple workaround for this problem, except from making an inline comment in the

Web.config which ships with DocScript:

B

166

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

• Joe: "I attempted to use the [View Symbol Tables…] Button in DSIDE, but it didn't do

anything. What's it for?" Remedial Actions Taken and Justification: I had moved the

functionality of this button into a DocScript BuiltInFunction, accessible from the DS

Source using Debug_ShowSymbolTables() . I had forgotten – however – to disable or

remove this Button. I decided against removal however, on the grounds that users are

unlikely to discover a feature – albeit a very useful one – which they cannot see. Instead,

I made the Button show this MessageBox:

• Klara: "Ich habe festgestellt, dass die Textausgabe von DSCLI manchmal unlesbar war,

wenn es eine Standard-BackColour für die Konsole gab, die der Vordergrundfarbe des

Ausgabetexts entsprach." Remedial Actions Taken and Justification: This was occurring

because DSCLI – in an attempt to be more user-friendly – uses different console

foreground colours where possible (in certain environments such as under PsExec, it is

not supported). The problem was that the foreground text colour was the same as the

console's Background Colour, meaning that the text was effectively unreadable. To solve

this, I need to set the Background Colour too. That makes DSCLI look like this…

…a little odd on a darker console, but at least it will always be readable now.

B

167

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

Final Prototype
The Solution is now in a near-final state.

Prototype: This point marks Release Candidate 1 of the product, whose noteworthy features are…

• Natively supporting Numeric-Literals of different bases in DocScript source. For example, 101_2

and 5_10 and 11_4 and 5 and 5.0000 all equate to the same numerical value, and are all valid

DS Expressions.

• Interpreting DocScript Programs, in either a Command-Line, Windows-Program, or Web-Browser;

 or or

• Providing advanced program-analysis features, including Program-Tree generation (XML or GUI),

and Execution-Result exploration;

 or and

• Hosting real-time multi-client Execution-Sessions, for the collaborative execution of DocScript

programs with multiple participating clients;

 and and

• Facilitating standalone expression-resolution in both CLI and GUI environments:

 and

B

168

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

Development Review
Progress Recap: Where am I in the development plan? [Review]

• Done: I have written the DocScript Interpreter, and the three different implementations thereof.

• Next: There is more testing and evaluation to be done…

Revisiting the Requirements and Success Criteria Tables

Testing Table: Does this component function in accordance with the stipulated criteria?

I will now test the Final Prototype against the initial testing criteria, which were delineated back in

§Analysis.

Here, I have conflated the three Requirements and Criteria Tables from §Analysis, into one table.

Have the components I designed met the stakeholders' requirements?

Category Related Criterium (Analysis) ☑ Passed?

(Language) A Programming Language
Formal Specification
(LangSpec)

↓

(Language) Serviceable Language Features
including:

↓

(Language) Data Types Yes; the language includes this feature:

<String> Name : "Ben"

(Language) Predefined Functions (for
common tasks)

Yes; the language includes this feature:

System_Run("CMD.EXE")

(Language) Encapsulative Units (E.g.
Functions)

Yes; the language includes this feature:

Function <Void> Main ()…

(Language) Procedural Programming
Constructs (While; If; etc…)

Yes; the language includes this feature:

While (Expr)…

(Language) OS Interoperability (CLAs &
Exit Codes)

Yes; the language includes this feature:

_CLAs

(Language) Specialist Mathematical
Features:

↓

(Language) BasedNumber Manipulation Yes; the language includes this feature:

<Number> Age : 101_2

(Language) Boolean Logic features Yes; the language includes this feature:

<Boolean> B : A|B

(Language) Maths Expression Evaluation Yes; the language includes this feature:

Age : 4+5/2^[~9]

(Implementation) A Programming Language
Runtime (engine) which can
execute Scripts

Yes:

B

169

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

(Implementation) [Windows GUI] An IDE with
text-editing and script-running
abilities

Yes:

(Implementation) [Windows GUI] A simple,
familiar graphical design

Yes:

(Implementation) [Windows CLI] Takes a
Command-Line argument for
the script to run

Yes:

(Implementation) [Windows CLI] Returns the Exit
Code of the Script just run

Yes:

(Implementation) [Web Client] Runs on a variety
of different browsers on
different devices

Yes:
Google Chrome (~v50+)
Apple Safari
Moz://a Firefox

The API itself can actually be used from any
HTTP-compatible browser, including the
likes of Internet Explorer 1.0

(Implementation) [Web Client] Allows the user to
enter source code into a text
field and thereafter execute it

Yes:

(Usability) Singular Expressions can be
evaluated independently
(without having to run a whole
script)

Yes:

B

170

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

(Usability) Instructions and
Documentation is organised
and easy to find

Partially: There is a page in DSI (the web
system for DocScript) which contains help
and basic instructions, and there is a help
dialog in the IDE program.

However: this is not really sufficient.
Therefore, I require an easy-to-access,
quick form of help, which enables users and
newcomers to get to grips with DocScript.

To this end, I have decided at this point to
film a short "DocScript in 3 Minutes" video,
explaining how the system works.

In addition, on account of the stakeholders’
comments, I shall implement a pictorial
help feature in the DSIDE product, to more
visually explain the basic DocScript
concepts, required to start writing DS
Programs.

(Usability) The Language is easy to learn
and use

{See forthcoming Stakeholder-Feedback
section…}

B

171

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

DocScript in 3 Minutes
It was incidentally at this point, that the "in 3 Minutes" video was filmed and edited…

(https://youtu.be/ybl5pVSJOOk)

https://youtu.be/ybl5pVSJOOk
https://youtu.be/ybl5pVSJOOk

B

172

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

Testing and Evaluation
Overview
On completing §Development and Testing, I now have a functional set of software products, which –

as has been proven by the testing-to-inform-development – go at least some of the way towards

meeting the criteria and stakeholder needs.

[Above] DocScriptIDE with an example program

What remains, is to…

• …More thoroughly test the reliability and robustness of the DocScript software.

• …Assess the usability of [a] each individual component, and then [b] how effectually the

components fit together. Then, I will evidence these usability features, justifying

their success, and commenting, on how any as-yet unmet or incomplete features

may be added in the future.

• …Determine – for each success criterium defined in the Analysis and Design stages –

whether it can be proved to have been met, by collected evidence.

• …Remark on how any unmet criteria might be addressed, in the future.

• …Declare current issues with the maintenance of the solution.

• …Revisit the anticipated limitations from the Design stage, describing how they have

been tackled, and how any as-yet insuperable limitations might be overcome in the

future.

• …Check-in with the Stakeholders for the last time, ensuring that they are (largely)

satisfied.

Reliability and Robustness
One of the primary stipulations of the stakeholders, had been that the DocScript system must

necessarily function across a number of "different platforms, architectures, operating systems, and

environments". Therefore, it is especially important that the software is dependable and reliable,

because the environments under which it is to run, cannot be guaranteed to be consistent. To this

end, I shall now test that this diversity of robust functionality does indeed work as I have described

it.

B

173

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

Predictability

I wrote a quick script to run 1000 instances of a DocScript program, which takes in a command-line

argument as an integer, multiplies it by 4, and outputs the result. The runner-script checks, that for

each execution, the expected result is produced. That script looks like this:

Test: I executed Powershell.exe ShouldBeMultipliedByFour.PS1 , watching out for any output

besides the closure message.

Result: Success: There were no instances of the "unexpected result" message, so all 1000

interpretations of the program worked entirely consistently and predictably! This means that the

language can rightly be called reliable.

Justification: The use of a script here, meant that I didn't manually have to execute the DS program

1000 times. This saved time, and meant that the testing occurred in an automated, more consistent,

fashion. This was demonstrably a success.

B

174

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

Robustness: DSInteractive Mass-Testing

I set up a total of 12 different physical computers on the same Local-Area Network, so that I could

effectively test the performance of the DocScript Interactive system, when it is put under-stress.

Then, to demonstrate that DSInteractive has been designed with

extensibility and scalability in-mind, I used this Rack of

Enterprise Servers which I happened to have lying around, to

host the DSI Services. I had one physical server dedicated to the

DSI Database, which communicated over the network to

another physical server, which was hosting the API and Client-

Pages from IIS. This could in fact be made even more distributed

via SQL Server and IIS Load-Balancing, but using 16 Logical (over

4 Physical) CPUs and 24 GB of RAM, to serve 12 computers,

seemed sufficient to me.

 ← Hosting DSI (SQL Server and IIS)

↑ I also configured a local DNS record for the Web server, so that I wouldn't need to memorise the

IP Addr. of this server for all 12+ clients. This ended up being "DocScript.MullNet.NET.", due to

the connection-specific DNS suffix for the Active Directory Domain on which DSI was being hosted.

Justification: This made orchestrating the mass-testing easier and quicker.

B

175

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

↑ Then, to monitor the load on the DSI Servers, I configured a custom PerfMon Tool, to graph the

SQL Server and Network activity for me. As can be seen from the above graph, the connections and

bytes sent/received do fluctuate a great deal, but this corresponds to the initiation or ending of an

Execution-Session, whereat all clients make several AJAX requests and sometimes refresh their

pages too.

Test: I ran the Mass-Testing in the described configuration for ~3 Hours, monitoring the graph, and

for stability of connections.

Result: Partial-Success: The servers did cope with the load reasonably well, but I did have one

problem with a specific CEP (bundle of JavaScript broadcast to DSI Clients during the Execution-

Session), which removed all elements of the HTML Document, replacing them with a single image.

This meant that the client would instantly attempt to fetch new Execution-Session Events, claiming

that it had no current Events in its memory (because these had been deleted from the HTML). Then,

the server would respond with all the ES Events (rather a large number of data), which the client

would fail to add to the now-non-existent ES-Events-Tables. This caused an infinite loop of requests

B

176

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

from the client, which instigated 100% CPU usage:

The Server was similarly overwhelmed.

Remedial Actions Taken: To fix this, I added in a check before the ES-Events-Request is made by the

client, which ensures that the HTML Events tables are still existent. If they aren't, the request isn't

made, and the client realises that it is corrupted.

The JavaScript .some() function is similar to the .NET .Any() LINQ method.

This solution fixes the issue!

Usability Features
These are the features designed to make the logical and algorithmic parts of a program,

commandable from the point of view of the end user. They include visual aids (e.g. syntax

highlighting, or button placement) and control aids (e.g. the ability to quickly delete an Execution-

Session from the ESManager, instead of having to use ssms).

B

177

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

Stakeholder-Testing Meeting

I met with the four primary stakeholders, to show them the Progress I have made with the DocScript

products so far.

Together, we reviewed the following Usability Features…

In the Language Specification

Operators

Test: "Have the DocScript Operators been implemented in such a way as to meet the ease-of-use and

standardisation requirements which you – the Stakeholders - stipulated?"

Result & Comments: Positive: There is no operator overloading (thereby simplifying the learning

experience), and all the operator characters can be found on a standard UK-ISO Keyboard, such as…

…meaning that there are no ALT-Codes required for any of the symbols, including ¬|&^%*/-+'~

Keywords

Test: "Are the DocScript Keywords clear, self-explanatory, and memorable?"

Result & Comments: Positive: The Statement-Closing notation of End{StatementType} e.g.

EndFunction means that effectively only half the number of keywords need to be remembered,

since the statements all follow this pattern. In addition, the grand total of 6 Keywords, means that

B

178

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

there isn't a litany of complicated abstract jargon to memorise, for users of this simple scripting

language.

In the Implementations

Windows IDE

I discussed the following Usability Features of the DocScript© Windows™ IDE with the Stakeholders:

• Coloured Icons - Result & Comments: Positive: "These greatly improve the ease and speed with

which the software can be navigated visually; the eyes lock onto the colours in their locations, to

form a frame-of-vision, which enables a rapid memorisation of where different features are."

• Zoom, Full-Screen, and ViewPlus Features - Result & Comments: Partially-Positive: "It is very

useful to be able to zoom-in and -out, particularly for presentations and teaching and the like,

although I'm not sure if the Skew and Rotate options were really necessary. Nevertheless, then

don't impede the functionality of the product, just by being there!"

• Syntax-Highlighting - Result & Comments: Positive: "This is a veritably useful feature; in a

similar way to the coloured icons, it creates a frame in the mind's eye, which calibrates the

glances around the source code and IDE. This makes decomposing the program visually,

significantly easier."

• The All-In-One Run (F5) Button - Result & Comments: Positive: "This is much easier than

individually pressing F1, F2, and then F3."

• Keyboard Shortcuts - Result & Comments: Positive: "Great! Once you learn them, it makes

usage of the IDE faster than using the mouse for everything."

• The QuickAccessToolbar - Result & Comments: Negative: "The Microsoft Ribbon SDK provides

the ability to pin buttons to the QuickAccessToolbar, but in the DocScript IDE, this hasn't been

enabled – why not?"

Seemingly, I had to add a XAML Attribute to the RibbonButtons, to permit them to be added to

the QuickAccessToolbar. I quickly did this for some of the most frequently-used commands, so

that they can now be pinned… ↓ Pinned "Copy" Button

• The BackgroundWorker for Interpretation Operators - Result & Comments: Partially-Positive:

"It's good that the Interpretation takes place in a separate thread to that of the UI, however we –

the Stakeholders – have noticed some odd behaviour with the [Cancel] Button not really working

for certain operations. For instance, if the DocScript program starts playing some audio, and the

Cancel button is pressed, then the audio continues to play, even after the ostensible cancellation.

B

179

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

This isn't really a huge problem though, especially in the vast majority of simpler, I/O-Based

Programs."

Parenthetically, the number of available Keyboard Shortcuts in DSIDE has been expanded since those

mentioned in §Design; the .KeyDown Event Handler now looks like this:

Other Implementations

Besides the IDE – which necessitates and claims a preponderance of the usability features – are the

other implementations…

AcceptButtons

I have ensured that all the main Windows and Dialogs have their AcceptButton Properties set. This

means that there is a default Button on the form, which is automatically clicked when the [Enter] key

is pressed. This enables faster navigation of the various DocScript windows, because – like the

Keyboard shortcuts – it minimises the level of mouse-interaction required.

Test: Get the Stakeholders to attest to the benefit of having the AcceptButtons – Are they actually

useful, of does the additional blue border highlighting make the User Interface more confusing?

Result & Comments: Positive: I sent a copy of DSExpr.exe to the Primary Stakeholder "Kiran", who

commented that this is a useful feature, which expediates navigation and usage of the package; he

could, for instance, easily close the ResultWindow dialogs by pressing enter, after having requested

B

180

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

the evaluation of an expression:

Standalone Expression Evaluation

Test: Get the Stakeholders to solve some mathematical and Boolean-logic problems, using the

DSEXPR.EXE program. Is it easy-to-use?

Result & Comments: Partially-Positive: "The product is largely well-thought-out, and is useful for

quick expression analysis. It complements the DSCLI's /Live mode quite well in fact. It would be

nice, however, if the [Resolved Expr.] Window would automatically resize to whatever the length of

the output string is. This is not a problem with the /Live mode, when using the ?{Expr} feature."

Help Window

The IDE does include a Help Window, which – at the moment – looks like this:

Test: Get the Stakeholders to use the Help Window (Ctrl + H) – Is the information thereon useful?

B

181

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

Result & Comments: Partially-Positive: "This text-based help is of some use, and is better than

nothing, but isn't particularly extensive, dosen't introduce concepts about the DS Language, and isn't

visual."

Remedial Actions Taken: I have now written a "Pictorial Help" system for DSIDE, using many of the

same DS Architecture and system-mechanics diagrams from this document, and the DS-

Specification-PowerPoint.

The pictorial help can be launched using the dedicated button…

…or the KeyBoard ShortCut Ctrl + Shift + H.

It looks like this:

B

182

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

[Above + Below] DSIDE's Pictorial-Help Feature

How the Implementations work together

I also need to consider how well the 3 (or four including DSExpr.exe) DocScript implementations

work together.

Firstly, it would not make sense for the Command-line Implementation, DSCLI.exe, to call on

features of the Windows IDE, DSIDE.exe. This is because using the command-line interpreter can

sometimes occur in non-desktop environments – e.g. via a TELNET or PSEXEC session. Such

environments would fail to invoke features of a graphical Windows application, and even if they

were invocable, the end user (sitting on the other end or an 80-column ASCII text terminal) would

not see any of the graphics reproduced.

Secondly, because the web-based client, DSInteractive, is designed

to run on different operating systems, it cannot be relied upon for a

particular subsystem to be present on the client. For example, were

all clients known to be using Internet Explorer 9, with Silverlight

enabled, then it may be worthwhile implementing a [Run in DSIDE]

button, for easy transfer of execution to the Desktop Interpreter.

However, because browser plug-ins are largely viewed pejoratively

these days, no such consistency can be expected, and therefore no

such feature can be implemented.

 What does make sense – however – is to provide integration

from the Windows IDE, to the other DocScript products. If a

user is running DSIDE (from a desktop WINSTA Session), then

it can reasonably be expected that other processes (such as

B

183

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

the DSCLI command-window, or a web-browser instance) can be launched, and that the user will see

them. Therefore, the buttons in the adjacent image, exist within the DocScript® Windows™ IDE© to

facilitate such integration.

Future Additions: Stakeholder-Suggested

Usability Improvements
The Stakeholders did have some ideas for potential future

improvements, aside from those mentioned during my

questioning.

This is how any unmet criteria might be addressed, in the future…

• [Esc] to close Dialogs - "It's slightly inconvenient that the Dialogs in the DocScript software

products can't be closed by the escape key. This is a commonplace GUI feature, and it would be

nice to have it here too." Future Action to Take: I will add an EventHandler to the .KeyDown

Event of the Forms, which calls .Close() if the .KeyCode is equal to Keys.Escape .

• An Installation Wizard - "It's good that the products don't require installation, however it would

be useful if there were an InstallShield-style wizard to more permanently install the DocScript

Software. This would be particularly useful for deploying DocScript across an AD-Domain using

Group Policy, if the installation package were an .MSI file." Future Action to Take: I will create

an MSI installer for the DocScript Desktop Components (everything except from DSInteractive,

which requires an SQL Server Instance). Visual Studio supports the creation of MSI packages

natively, and they include both a Graphical and a Silent means of installation.

• An Animated SplashScreen - "The current SplashScreen for DSIDE is adequate, but it might be

nice to be able to tell precisely what the Process is actually loading." Future Action to Take: I

ought to be able to add a loading-bar or text-label to the SplashScreen, making it a Window,

instead of just a PNG as it is at the moment. For example, the Photoshop CS5 SplashScreen has a

loading label of the sort I mean.

• Use of a VCS or Source Control System - "As the development of DocScript continues, you may

wish to collaborate with other developers. This would necessitate a Version-Control-System,

which can track changes and handle merging or altered lines in different parts of a file." Future

Action to Take: Although it would be best to use VS-TFS for this, I must regrettably concede that

– these days – the only realistic way to host the DocScript source-code to be freely-accessible,

centralised, and have documentation in one place, does seem to be GitHub. There is a version of

the Git Source Control System for VS 2010, which I have started to experiment with, and would

have to admit that it's actually rather nice. This system will therefore be part of DocScript's

future, for pragmatic reasons.

 Vs.

B

184

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

Future Additions: Personal Ideas
In Addition, I do have some personal thoughts about exciting features I'd like to integrate into

DocScript in the future…

• DocScript Remoting! – The ability to remotely execute DocScript programs on a target

computer of the user's choice. I think I'd build this in as a feature of DSIDE, so that if

DSIDE.exe were to be running on two computers on the same Network, then they could

use TCP Networking to communicate over a certain port, and one DSIDE instance would

receive a program-to-execute from the other, which would be interpreted ad-hoc.

What would be really neat, is if there didn't even need to be a DSIDE client running on

the target computer though. I could use PsExec to connect to a machine (with supplied

credentials), select a Logon Session, and instantly run a DocScript program thereon.

(Rather a lot of fun could be had with this feature, I feel)

• DocScript Compilation! – At the moment, this in an Interpreted Programming Language.

However: I have been thinking about how I could extend it to permit compilation of a

DocScript program to a self-contained .exe file. I would do this by translating each line of

the DocScript program (one of the 8 possible IInstruction Types) into a corresponding

Visual Basic .NET line. The two languages are – by no coincidence – rather similar, so this

translation would be quite doable. Then, I would save this generated Visual Basic source

to a .VB file on disk, and automatically run vbc.exe (the Visual Basic .NET Compiler) to

generate an .exe file. There would be a Compilation-Options dialog before this to allow

the user to choose e.g. an Icon to use for the output .exe. To get the Built-In-Functions

to work, I would have to include a copy of DocScript.Library.DLL next to the output

.exe. However, I could solve this problem by automatically running ILMerge.exe, on the

.exe and .dll.

• DocScript Graphics! – The ability to use DocScript to create basic GUI applications. At a

basic level, I could take a Microsoft-SmallBasic-like approach, and have some Built-in

Functions for managing a single GraphicsWindow, e.g. Graphics_DrawText("Hello",

50, 50, "#0A0A0A") and Graphics_DrawImage("X:\DS\Client.PNG") .

Alternatively, I could even use some form of markup language to generate user

interfaces from (e.g. a WinForms .Designer.VB , .HTML , .XAML , or .DSGUI file).

It must be said, however, that there comes a point at which these advanced

features can't really be used to their full potential; DocScript has been designed

from-the-ground-up to be a SIMPLE and UNPRETENTIOUS system, and bolting-on

advanced functionality is ultimately limited by the simplistic nature of the

programming language itself.

B

185

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

Testing Tables & Success Criteria
There were 3 tables from the [Analysis] stage, and 1 from the [Design] stage, which I need to

officially sign-off. Reminder: The Analysis-stage tables have already been reviewed at the end of

§Development.

Testing Checklist (Interpreter DLL)

Now that the vast majority of the development is complete, myself and the

Stakeholders shall perform each of the following tests, to ensure that the

requirements have been met. This testing table was delineated back in §Design.

Assert-style Test Passed?

An error is thrown if two variables are declared within the same (or relative downstream)
scope, when both variables have the same identifier, or the identifiers differ only by case;
the language is not case-sensitive

Yes

Variables can be declared in each of the 6 valid DataTypes (The 3 DataTypes, and their
Array variants)

Yes

A high degree of verbosity is present in the error message resultant of an attempt to
lexically analyse the expression (e.g.) 5 + + 4

Yes

A Function can be declared with IInstruction-based contents statements inside, such as an
IfStatement If (Expr) {LineEnd} … EndIf

Yes

A Global variable can be declared outside of any Functions (E.g. <String> NameGlobal
= "Ben Mullan; S7; Y13; U6;")

Yes

An error is thrown if a Program is written without an EntryPoint Function Main Yes

A DocScript Program can be written to output "B" if Command-Line Argument [0] is "1", and
"C" if it is "2" (Just an example, to prove that CLAs can affect programme output)

Yes

A DocScript program can be written to Output() "Hello, World!" Yes

A DocScript program can be written to take Input() from the user Yes

A Comment can be specified with # Comment {LineEnd} Yes

The Expr [5 + 3] * 9 resolves to 72 whereas 5 + [3 * 9] resolves to 32 (proof that
brackets work)

Yes

The numeric literals 10, 10.0, and 10_10 are all magnitudionally equivalent Yes

All of the Test Data run successfully in the DocScript System & Implementations Yes

Each of these tests was performed by the stakeholders, on their personal computers. It is my hope,

that the copious screenshots and other media evidence provided hereinbefore constitute a sufficient

volume of evidence for these tests…

B

186

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

Extended Testing Evidence

…However, to pander deferentially to the mark scheme at whose mercy this document lies, I am

providing this supplemental evidence of the products having passed these tests:

B

187

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

Future Maintenance
Further to the comments I made about the use of Source Control, the aspects of DocScript's Future,

are as follows:

• Accessible – There is now a GitHub "Repository" for DocScript, which means that anybody can

PULL down a copy of the entire solution, and see how DocScript works, or make changes and

improvements. I do find many of the features of Git to be sloppy and hideously-inconsistent

(such as the complete lack of uniformity in the filenames README.md , .gitignore ,

LISCENSE.txt , and .gitattributes), but there nevertheless don't seem to be many

alternatives to "GitHub", so DocScript seems to be along for the ride, as it were.

https://github.com/BenMullan/DocScript.git

• Flexible – The fact that the solution is extremely modular and extensible, means that sub-

components of DocScript can easily be implemented into other products. For instance, if an

application such as an image-editing package, required basic scripting capabilities, then

DocScript could straightforwardly be embedded – using the Core Interpreter DLL – along with a

few custom BuiltInFunctions, to permit automation of certain image-manipulation tasks. Many

products use scripting languages such as Lua to achieve a similar goal.

• Approachable – The extensive comments, inline-annotations, and specification diagrams

provided with the solution, mean that navigation of the project ought to be at-least tractable, if

not almost enjoyable. The self-evident variable names and identifiers have a similar effect.

https://github.com/BenMullan/DocScript.git
https://www.lua.org/cgi-bin/demo

B

188

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

Limitations – Or were they?
Here, I revisit the limitations which – several months ago in §Analysis – I anticipated encountering

throughout the development. Were they genuine concerns?

• The Breath (complexity) of the Solution: "How many built-in functions will be available?

Will there be additional encapsulative features such as namespaces? How many complex

operators can be used for the mathematical expressions?"

Outcome: Once I got started, I rather quickly picked-up pace with the development (the

solution is now at 82,634 lines), and was therefore able to implement more features

than I had thought I was going to be able to. There is a multiplicity of Built-in Functions,

and it's easy to add more. There aren't any namespaces yet, but that wasn't really

required, because the BIFs use the {Category}_{Name} nomenclature, e.g.

System_Run() . There are all the standard mathematical operators, and then some;

many languages don't have exponentiation ^ or modulo % operators.

The breadth therefore never became an effectuated limitation.

• Excessive Complexity: "…any worthwhile programming language must be sufficiently

complex as to enable the programmer to develop at a reasonable pace, once familiar

with the system. At the same time, this language has the paramount requirement that it

be simple to use and learn."

Outcome: Having seen the language being learnt for the first time by several

stakeholders, I would argue that it is more approachable than most other languages, but

acknowledge that there are nevertheless still a number of slightly more unconventional

elements – such as the explicit separation of Parsing, Lexing, and Execution – which

many newcomers won't instantly understand.

Excessive Complexity therefore became a small but unavoidable problem.

• Mandatory Use of a Keyboard/Mouse for Interaction: "Having to interact with the

programming language in a conventional, predominantly keyboard-based fashion (which

was agreed upon by the stakeholders to be suitable) does of course mean that people

with certain disabilities, which make it difficult for them to type, may be unable to make

full use of the software."

Outcome: I have not come across any stakeholders (so-far) who have been unable to

use a Keyboard or Mouse to interact with the software. Even if such stakeholders were

to make themselves known, I'm afraid that the problem isn't in the scope of this project.

Keyboard usage therefore isn't a relevant limitation.

• Difficulty of Development: "Since I have not implemented any complex expression

parsing in my programming before, this is something I shall have to learn much more

about."

Outcome: I initially researched Parsers and Abstract-Syntax-Trees from an old book from

the 1980's (COMPUTER SCEINCE, 4th Edition, C. S. French), but progressed onto a

Masters' Course on Compilers, from the university of Washington. After tens of A3

sheets of planning, and thinking about how to create such a complex system, I

eventually came up with – what I haughtily considered to be – a watertight structure.

B

189

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

(I'm still somewhat surprised that I haven't discovered some gaping hole or structural

problem somewhere in the logic (It may just be a matter of time…))

Hence, the Difficulty wasn't an insurmountable limitation.

• Security: "…since it is a system of such complexity, and because there are a very large

number of edge cases and unaccounted-for pieces of input, certain scripts may

potentially cause insecure behaviour such as buffer overflows or injection."

Outcome: I have not come across any security flaws so far, and I do claim that if properly

configured, there is nothing insecure about any of the DocScript products. However: The

component most susceptible to security issues would be DocScript-Interactive (the web-

based implementation). Misconfigurations of the system user accounts under which the

Web Server and SQL Server run, could in-theory expose private areas of a computer.

Although the Security hasn't been an issue hitherto, it's possible that it could lead to

problems in the future. Therefore, to overcome this limitation, I could produce a more

in-depth setup guide for DSInteractive, to reduce the likelihood of misconfigurations.

Conclusion
I led a final check-in with the Stakeholders, at the end of what has been a 12-month project…

Stakeholder Comments

The Stakeholders made the following concluding comments:

• It's a very convenient and portable set of powerful and well-thought-out programs. In

particular, the DSCLI /Live mode is very useful for expression evaluation.

• The products are effective as approachable pedagogical teaching tools. Specifically,

DSInteractive is great for multi-client algorithmic demonstrations.

• It certainly would be exciting to see the DocScript-Compilation, -Graphics, and -

Remoting concepts come to floriation.

Where's All the Code?

It's here, or at http://BenM.eu5.org/ under "DocScript".

The more decadent amongst you, may even wish to use https://github.com/BenMullan/DocScript/.

https://1drv.ms/f/s!AlUs85FIEgtQhyGTIRj17AAWBPt6?e=UjutA1
http://benm.eu5.org/
https://github.com/BenMullan/DocScript/

B

190

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

Appendix
Abbreviations
• IR Intermediate Representation (e.g. an AST or Instruction Tree)

• LBL Linear Bracketed Level (ExprTree Construction)

• IOT Intermediate Operator Tree (ExprTree Construction)

• SCI Scanned Component Indicator (ExprTree Construction)

• ESID ExecutionSession Identifier (DocScript Interactive)

• TPV Tokens to (Token)Patterns Validator (Lexing)

• CEP Client Execution Package (DocScript Interactive)

• BIF Built-In Function

Notation
• No. Number Of

• UpToInc * Up-to and Including *

• UpToExc * Up-to but Excluding *

• <*> Of the DataType * (DocScript Source)

• _* * is an Identifier for a Local Item

• *_ * is an Identifier for a Private or Protected Item

• *__ * is an identifier for a Friend Item

• _*_ * is an Identifier for a Static (not Shared) Variable

• T* * is a Generic Type Specifier

• I* * is an Interface

• Ensures * Throws an Exception if * is not the case

• DS*Exception * is a DocScript DataType inheriting from System.Exception

• [*] WebParts: * will be returned by the API, as an XML Attribute

• [...*] WebParts: * will be returned by the API, when Long-Polling ends

• [<*>] WebParts: * will be returned as an XML-Child of <ResponseContent>

References
• https://courses.cs.washington.edu/courses/csep501/14sp/video/archive/html5/video.html?id=csep501_14sp_1

• https://greg4cr.github.io/courses/spring16csce747/Lectures/Spring16-Lecture23PostRelease.pdf

• https://www.codeproject.com/Articles/12335/Using-SqlDependency-for-data-change-events

https://courses.cs.washington.edu/courses/csep501/14sp/video/archive/html5/video.html?id=csep501_14sp_1
https://greg4cr.github.io/courses/spring16csce747/Lectures/Spring16-Lecture23PostRelease.pdf
https://www.codeproject.com/Articles/12335/Using-SqlDependency-for-data-change-events

