A-LEVEL COMPUTER SCIENCE
PROGRAMMING PROJECT

Ben Mullan

Note: It is useful to open the Navigation Side-Bar in MS Word, to be able to see the structure of the
document at all times.

A DocX version of this document is available here.

Contents

Introduction 7
Hello, World! 7
DocScript in 3 Minutes 7

Analysis 8
Problem Identification 8
Stakeholders 8
Why this problem is suited to a Computational Solution 10

Specific Computational Principles Employed 10
Problem Recognition and Decomposition 10
Pattern Recognition 11
Automation 11
Divide and Conquer 11
Abstraction 12

Interviews and Analysis Thereof 12

Questions 12
All Stakeholders 12
Hobbyist Use 13
Educational Use 13
Questions’ Explanation and Justification 13

Responses 14
Analysing the Responses 17

Existing Similar Products 20

1) Chrome’s JavaScript Console 20
Noteworthy Features 20
Limitations 21
Components Applicable to My Product 21

2) BaseConverter / BasedNumber Finder 21
Noteworthy Features 21
Limitations 22
Components Applicable to My Product 22

3) CScript.exe / WScript.exe 22
Noteworthy Features 23
Limitations 23
Components Applicable to My Product 23

4) Visual Studio 23
Noteworthy Features 24
Limitations 24

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

https://1drv.ms/f/s!AlUs85FIEgtQhyGTIRj17AAWBPt6?e=UjutA1

Components Applicable to My Product 25

Features of the Proposed Solution 25
Limitations of the Proposed Solution 26
Hardware and Software Requirements 27
Hardware 27
Software 27
Stakeholder Requirements 27
Further Meeting with the Stakeholders 27
Requirements for the Programming Language 28
Requirements for the Implementations 29
Success Criteria 30
Design 32
Overview 32
Formal Language Specification 32
Choosing a Name 32
General 32
Syntax 35
Operators 39
Research 39
Characteristics 39
Terminology 39
Expression Operators Table 40
Rules 40
Explanations & Justifications 40
Instructions 41
An Example DocScript Program 42
DocScript System Architecture 43
At a Glance 43
Explanations & Justifications 43

To Compile, or not to Compile 44
The Three Stages of DocScript Interpretation 45
Parsing & Tokens 47
Token Types 48
TokenType Regular Expressions 48

Parsing Algorithm Pseudocode 49

Lexing & Instructions 49
Instruction Classes & Interfaces 49
Instruction Classes Diagram 50
Instruction Class Members 50
Instruction Trees 51

Lexing Algorithm Pseudocode 51
Execution & I/O Delegates 52
The ExecutionContext Class [DocScript.Runtime.ExecutionContext] 52
Other Key Classes 53

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

Expressions [DocScript.Language.Expressions.|[Expression] 53

Programs [DocScript.Runtime.Program] 55

Key Algorithms 56
The Stack-Balanced Algorithm 56

The Unique Elements Algorithm 57

Key (Global) Variables 57
Namespaces 59
Piecing It All Together! 60
The DocScript Implementations 61
The Windows IDE (DSIDE.EXE) 61
User Interface Modelling 62

GUI Component Explanations & Justifications 64
Where’s the Validation? 64

Usability Features 64

The Windows CLI (DSCLI.EXE) 65
The Web Console (DocScript Interactive) 66
DSInteractive APl Sequence Diagram 67

DSI DataBase Tables 68
Entity Relationship Diagram 68

The ExecutionSession Object 71
Front-end Pages 71
Server-side Validation 72
Stakeholder Input 72
Testing 73
Inputs & Outputs 73
Testing Techniques 73
Unit Testing 73
Destructive Testing 73
Stakeholder Testing 73

Test Data 74
DocScript Source 74
Standalone Expressions 74

APl URL Calls 75
Command-Line Arguments 75
Explanations & Justifications 75
Testing Checklist (Interpreter DLL) 76
Post-Development 77
Post-Development Testing 77
Data to be Used Herefor 77
Development and Testing 79
Overview 79
Programming Conventions Used Herein 79
Naming Conventions 79
Explanations and Justifications 80
Modularity and Encapsulation 80
Explanations and Justifications 80

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

Comments and Annotations
Explanations and Justifications
Writeup Segments

[Stage 1] Core Interpretation Engine (DLL) Development
Parser
The Token Class
The Parser Module
Constants
GetTokensFromSource()
Modularity and Structure Considerations
Validation
Iterative Testing
Creating the Scratch-Testing Project
Debugging
Wait: Bootstrapping!
Logging
Custom Exceptions
KVP-Serialisation
Compiler-Extension Methods
Lexing
Expressions
Expression Classes
ConstructExpressionFromTokens()
How does that work then?
Testing: Example Constructed Expression Trees
Debugging
Instruction Classes
Terminal Instructions
VariableDeclaration
Testing
VariableAssignment, ReturnToCaller, and FunctionCall
Statement Instructions
Execution
linstruction.Execute()
IExpression.Resolve()
Program.Run()

[Stage 2] Command-line Interpreter (DSCLI.EXE) Development
Writing the CLA-Manager
The Surprisingly-simple Implementation
Using the Interpreter
Debugging
Incorrect Program XML Serialisation
Console closing immediately
Iterative Testing

[Stage 3] Windows IDE (DSIDE.EXE) Development
WPF and XAML
Keyboard Shortcuts
Implementing the DocScript DLL

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

80
81
81

82
82
82
84
84
84
85
85
86
86
87
91
91
92
93
93
94
94
95
97
98
98
100
101
101
101
102
103
105
110
110
112
113

115
115
116
117
118
118
119
120

121
121
122
123

Standalone Expression Resolution Utility (DSExpr.EXE)
Using the Interpreter
Debugging
Syntax-highlighting Nightmares
Null-Program Trees
While Loop Variable Scope
Iterative Testing

[Stage 4] DocScript Interactive (DSI) Development
Writing the API
Implementing the DocScript DLL
SQL Server Interaction
Database Structure
Client-side Pages and Scripts
Scripting: Linking the Back- to the Front-end
Iterative Testing

[Stage 5...] Whole-Program Testing
British Informatics Olympiad Question
Review
Primes-Below-100-Base-2-To-32 Example
Review
Improvements to make, revealed by the Tests

[...Stage 5...] Scenario-based Testing
Remote Command-line Usage
Review and Improvements Herefrom
Administrative Scripting
Review and Improvements Herefrom
Mathematical-Expression Resolution
Review and Improvements Herefrom
Interactive Multi-Client Execution
Review and Improvements Herefrom

[...Stage 5...] Unit-Testing

[...Stage 5] Stakeholder-Testing
Stakeholder Feedback

Final Prototype

Development Review
Revisiting the Requirements and Success Criteria Tables

DocScript in 3 Minutes
Testing and Evaluation
Overview

Reliability and Robustness
Predictability
Robustness: DSInteractive Mass-Testing

Usability Features

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

123
124
126
126
129
130
132

133
133
135
136
138
141
144
147

148
148
150
151
153
153

156
156
156
157
158
158
159
159
161

161

163
163

167

168
168

171
172
172

172
173
174

176

Stakeholder-Testing Meeting 177

In the Language Specification 177
Operators 177
Keywords 177

In the Implementations 178
Windows IDE 178
Other Implementations 179
AcceptButtons 179
Standalone Expression Evaluation 180

Help Window 180

How the Implementations work together 182
Future Additions: Stakeholder-Suggested Usability Improvements 183
Future Additions: Personal Ideas 184
Testing Tables & Success Criteria 185
Testing Checklist (Interpreter DLL) 185
Extended Testing Evidence 186
Future Maintenance 187
Limitations — Or were they? 188
Conclusion 189
Stakeholder Comments 189
Where's All the Code? 189
Appendix 190
Abbreviations 190
Notation 190
References 190

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

Introduction
Hello, World!

This 187-page file documents the development of the DocScript Programming Language.

It was written over the course of 12 months, and covers the planning, implementation, and testing
of the entire solution. Over 80,000 lines of computer code are written for the project, and they —
along with other development logs, resources, and final binaries — can be found here:

e My final Programming-Project folder for OCR: Click Here
e DocScript, on my website: Click Here
e DocScript, on //GitHub: Click Here

DocScript in 3 Minutes
Readers of this document may wish to brace themselves, by firstly watching the following video. This
was produced towards the end of the project, but nevertheless aids in elucidating the structure of

what is — admittedly — rather a large codebase...

(https://youtu.be/ybl5pVSIOOk)

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

https://1drv.ms/f/s!AlUs85FIEgtQhyGQU7_XiKvl4XGS?e=Qh9toK
http://benm.eu5.org/
https://github.com/BenMullan/DocScript/
https://youtu.be/ybl5pVSJOOk
https://youtu.be/ybl5pVSJOOk

Analysis

Problem Identification

At present, one is hard-pressed to find an easy-to-use Programming Language built from the ground-
up to handle computational numerical logic, including working with numbers in a variety of different
bases and formats, along with specialist Computer Science operators and mathematical functions, all
in the same package. Certain existing systems which go some of the way towards permitting the
programmer to use a select few number bases and mathematical operations, are inflexible, and do
not function across an adequate variety of different types of computer systems, due — in many cases
— to the increasingly diverse range of CPU architectures and Operating Systems used today.

Even — for instance — whilst my class and | were learning about some of the different number bases
frequently used in Computer Science earlier this year, we hadn’t a toolset to use for the purposes of
exploring and testing concepts, or validating answers to questions, e.g. for homework tasks. An
environment wherein such experimentation and evaluation could occur, would be invaluable not
only to students of CS, but potentially other disciplines too.

| will therefore be creating a new Programming Language from scratch, to solve these problems.
This involves:

e Designing a programming language SPECIFICATION (for the syntax, keywords, etc...)
e Implementing that specification into a RUNTIME "translator", to enable source code
written in accordance with the specification, to be understood and executed

There are many areas of Computer Science which require simple to complex mathematical
processes, including — but by no means limited to — the manipulation of numbers in different bases
and formats (such as fixed- and floating-point representations), hashing, encryption, and
compression principles, bitwise operations, and IP Address-related calculations, just to name a few!
During the forthcoming stages of §Analysis, | shall be delineating precisely which features are the
most important to the stakeholders of the product, by asking these stakeholders themselves.

But in addition to dedicated A-Level CS maths features, the language will need to implement a basic
range of commonplace procedural programming constructs, and be Turing-complete. Of particular
importance to the solution, is the fact that it ought to run on a range of different types of computer
system, as used by the stakeholders in question.

Stakeholders

Conveniently, the primary stakeholders herefor consist predominantly of students studying GCSE
and A-Level Computer Science or Maths. These clients are pupils between the ages of 16 and 19,
with varying levels of experience in informatics and mathematics. This is an important factor for the
project, because it is vital that | collect and analyse the viewpoints of a heterogeneous selection of
stakeholders, due to the different observations they will make on account of their different
backgrounds.

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

Stakeholder Relevance to Project Intended Use-Case \
e Has been programming for a number of Experimentation with number

years in a hobbyist context (C++) bases, and concept testing for
“ e Studies A-Level Mathematics maths, as well as having a
Oliver e In same school general-purpose Scripting
Language

e Inexperienced programmer — therefore Potentially for learning and
knows what’s hard to learn about existing ' reinforcing some mathematical

languages, and what can be improved in and programming concepts,

the product | am developing and also for use of a general-
Kiran e Insame school, and representative of the ~purpose Programming

wider target group for whom this product = Language

is intended

The proposed solution is appropriate to the needs of these stakeholders, as it is to be a simple and
easily-learned environment, which the clients can therefore use for experimentational purposes
without first having to spend a considerable amount of time familiarising themselves with.

In addition — however — to these primary stakeholders, | must consider some of the wider
stakeholders who should influence the development of this system. To this end, | have identified the
following external clients.

Stakeholder Relevance to Project Intended Use-Case
e Takes GCSE Computer Science Some light administrative
ﬂ e Uses basic scripting to automate tasks on scripting, but also for learning
his personal computer various CS Programming and
Joe “‘ e Attends a different school Maths concepts
o Experienced professional software For testing and
developer experimentational purposes
e Uses, and is familiar with, a variety of related to other products she is
Klara mainstream Compiled and Interpreted developing, as well as
Programming Languages educational purposes

e Isincidentally German, but | will translate
the questions and responses into English
for the interviews

The proposed solution is appropriate to the needs of these stakeholders, as the software will aim to
reinforce programming principles seen in more sophisticated higher-level languages. As befits users
of smaller and simpler programming systems, they will one day wish to progress onto more
advanced languages. The software being developed herein aims to provide this sort of educational
basis. A particular focus will also be placed on how the user interacts with the language. Though |
must further investigate exactly how these clients wish to be able to interact with the system, | have
a few ideas presently about — for instance — not having to enter an entire program just to get some
output from the language. This sort of feature would be suited to these clients who may often not
need to write a complete program, but rather, a short expression or statement, for their
experimentational and pedagogic resolves.

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

This range of stakeholders means that | will be targeting the following areas during the development
of the software:

e Hobbyist and Experimentational Use (Oliver and Kiran)
e Educational Use (Klara, Kiran, and Joe)

Why this problem is suited to a Computational Solution

Let us imagine the following example scenario, as a use-case for the software: A user wishes list the
prime numbers below 100, in each base from 2 (binary) to 32 (Duotrigesimal). Indeed, attempting to
perform this inherently systematic and sequential task on anything but a computer, might, in this
day and age, be considered preposterous.

Creating a Programming Language, therefore, to facilitate the computation of such problems, does
fundamentally lend itself to a computational solution as computers provide an untiring, consistent,
accurate, and scalable platform on which to build this software. In other words, there is no viable
way to create such a system, if it does not rely on a computer to at least some extent.

In this instance, it rather makes sense for the entirety of the solution to be computer-based. Data
can be easily stored on a computer, entered into the system (or by other means retrieved by the
programming language), and thereafter be stored back on the computer for further manipulation,
potentially in other programs. Such is the characteristically inter-compatible nature of data in
standardised formats when kept on a computer. Having to manage, move, and manipulate all this
data by hand, would be laborious at best, and — at worst — impossible.

Simply put, the Programming Language will need to take in some source code, analyse and validate
it, and then execute the instructions given. Each of these three basic stages is best-suited to being
carried out by a computer, not least because the user will expect their programs to be run in a fast
and consistent and idempotent manner.

Specific Computational Principles Employed

Problem Recognition and Decomposition
Ostensibly, the overall problem is attempting to execute the instructions provided by a user,
on their computer. However, the computational principles of problem recognition and
decomposition allow us to identify a series of underlying sub-problems; the instructions
must be syntactically and logically validated, comprehended by the computer, checked for
irregularities, and finally, performed. Whilst it initially seems that executing the instructions
themselves is the most complex and significant of these problemes, it quickly becomes clear
that in reality, the comprehension of the source code (initially just a long string) is the more
mammoth undertaking. On the outset, | anticipate that breaking down the input source
code will consist some of the following steps:

e Performing preliminary validation to ensure that no unexpected characters have
been used in the source as a whole

e Disregarding comments, which needn’t be executed

e Parsing the source, to derive a set of tokens from the keywords, identifiers, and
literals of the language

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

e Lexically analysing the tokens and forming a tree of semantically-significant symbols
e Attesting that the order of these symbols is valid for the subsequent stages

When this is overcome, the remainder of the problem actually seems comparably simple;
once the computer understands what to do, doing it is simply a matter of applying the
instructions to a scenario, such as performing them as actions. However, the parsed input
could — for instance — just as easily be used as the source for a translation program for
natural languages, e.g. from English to German. Decomposition has hereby permitted us to
recognise the compartmentalised and modular nature of this larger problem.

Incidentally, in this particular project there is the additional step of creating a formal
(meaning “concise” and “unambiguous”) specification for the programming language itself,
often referred to as a “LangSpec”. This is a separate problem to designing whatever it is that
will actually interpret and execute the language’s source code. Both problems, however, are
amenable to decomposition.

Pattern Recognition

Recognising patterns is a fundament of interpreting source code. It is impossible to account
for every possibility of input by hard-coding in the output, wherefore identifying a
predefined pattern in the input is significantly more effective and flexible. In particular, |
envisage using Regular Expressions to validate and find certain syntactical forms in the
source. A Regular Expression is like a template for some text; it can be satisfied only by an
instance of text which precisely matches the pattern specified in the RegEx. The RegEx
“M\d{3)\-28” — for instance — is satisfied by the string “974-2". Since getting a computer to
comprehend and execute the instructions of a programming language involves a large
amount of pattern recognition, this sub-problem pertains to a computational approach.

Automation

Characteristically, a medium- to high-level programming language facilitates the automation
of many tasks requested by the programmer. In fact, having a system to run the language for
you, constitutes automation; no manual overseeing of the execution is necessary.

In addition, a number of automation principles will be used during the development of the
software. For instance, the IDE will automatically {Check Syntax, Resolve Dependencies,
Compile, and Link the Project} on the press of [F5]. Hence, automation can speed up both
the development and the execution of the system being developed here.

Divide and Conquer

The “divide and conquer” principle manifests itself in this project through the fact that
several smaller problems were derived from the initial proposal. When viewed in an
individual context, each smaller problem is very much manageable and can be conquered,
before moving onto the next one.

In addition, the principle of Multithreading is a manifestation of “Divide and Conquer”; a
substantial process can be divided into a number of sub-processes which can each be
executed on their own CPU. Because many modern computer systems have multiple logical

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

and physical CPUs or Cores, this multithreading can be an effective means of conquering a
conventionally time-consuming computational task in a vastly-reduced time.

Abstraction
Considering the target stakeholders for whom this software is ultimately being designed, a
large amount of abstraction will have to be employed in order to make the system easy to
use and accessible. Naturally, many programming languages implement a wide range of
abstractive features, from predefined functions and libraries, to providing object-orientated
features to the programmer. The user needn’t list hundreds of assembly instructions with
their operands, or enumerate each of the Win32 API calls involved in a relatively simple
procedure such as outputting text. Instead, this sort of process is usually outsourced to a

singular inbuilt function or keyword, such as Write()|or Print()]. I will be interviewing

stakeholders shortly to determine how exactly layers of abstraction should be implemented
into the product.

In addition to abstracting complex processes into simple keywords in the language itself, the
principle will also have to be used in the inner workings of the execution engine. Whilst the
source code is liable to contain a large amount of information useful to the programmer, not
all of this is of relevance when it comes to running the program. Comments, for instance,
along with auxiliary whitespace and any programmer-specific syntactical layouts, are
amongst the first elements to be ignored during the parsing. This is a form of abstraction;
simplifying, and only paying attention to the most important components.

Primarily though, the purpose of the software being written here is to take some input, and
produce an output based on it. Therefore, during the Design phases of the development, |

will be placing a particular focus on this abstracted view of [Input = ProceR = Output].

Interviews and Analysis Thereof
In order to effectively identify the features most sought by the stakeholders, and find out what
should be avoided, | shall be undertaking a series of interviews with the clients.

Questions

The first stage in this process is to devise a set of questions to ask. These
guestions need to establish specific pieces of data which | can use to
design the product, and they also need to make sure that | understand the

needs of the Stakeholders.

All Stakeholders
The following questions are for applicable to all of the stakeholders

1) Which areas of maths do you find yourself referring to most frequently, whilst
programming?

2) Which computer system(s) do you currently use (a) whilst programming, and (b)
recreationally? What are the architectures and operating systems of these computers?

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

Which components of existing programming languages or systems do you find annoying or

cumbersome?

4) Which components or features of existing programming languages do you like and find
useful?

5) ..And what, therefore, would you perhaps like to see implemented in this system, to aid in

its ease of use and functionality?

Hobbyist Use
The following additional questions are for the stakeholders involved in the hobbyist use area
(represented by Oliver and Kiran)

6) How frequently do you use programming languages for your own personal
experimentational and hobbyist purposes?

7) Where do you think a reasonable line can be drawn between hindering simplicity and
needless complexity, in the context of a programming language?

8) Is there a particular style of programming (paradigm, nomenclature, or simply a set of
tendencies) that you lean towards, for experimentation?

9) Are you satisfied by the programming toolset currently at your disposal?

Educational Use
The following additional questions are for the stakeholders involved in the educational use area
(represented by Kiran, Joe, and Klara)

6) Inyour experience, what do you think makes some existing programming languages hard to
learn?

7) How do you interact with the Programming Languages you already use?

8) What, if anything, do you find cumbersome about this, and how might you more ideally wish
to use a programming language system?

9) What do you think some of the most important principles of higher-level programming
languages are, that need to be learnt in order for students to progress onto systems
requiring a deeper level of understanding?

Questions’ Explanation and Justification

| have used a mixture of open and closed questions as appropriate, in an effort to evoke both
specific responses, as well as broader and more substantial answers including detail | may not have
considered thitherto.

e Question 1 aims to establish which mathematical utilities the programming language ought
to have. This is important, as the primary point of specialisation for the language is its use as
a mathematical experimentation and utility environment.

e Question 2 should enable me to determine which operating systems and computer types |
need to support. This data contributes directly to some of the Hardware and Software
Requirements of the product.

e Questions 3 and 4, and 5 investigate the problems and useful features of existing languages.
The responses to this question will be very significant to the further development of the
software, in terms of which components | should aim to implement.

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

e From question 6H (Hobbyist Use Questions), | should be able to delineate what design
choices need to be made, in order to make the product suitable for use at the frequency
specified by the clients.

e Question 7H, is being asked to get the clients’ views on another rather important principle
of the development of the system; a balance must be met between an excessive level of
simplicity — whereby the language would be difficult to use — and a superfluous level of
complexity — whereby the language would be equally difficult to use, and indeed, learn.

e Question 8H aims to establish whether or not a particular style of programming (paradigm,
nomenclature, or simply a set of tendencies) might be best-suited to the experimentational
uses for which the product is intended.

e Question 9H identifies whether or not the client is content with their current programming
toolset. It is a closed question (yes/no) and serves only to corroborate the previous
responses.

e Question 6E (Educational Use Questions) attempts to discover what it is about some of the
existing products that makes them difficult for beginners to learn. This information is useful
as | should aim to avoid implementing these features myself.

e Questions 7E and 8E enquire about the manner by which the clients currently interact with
their programming languages. This is an interesting part of the overall problem, and affects
the accessibility and ease of use of the system too.

e Question 9E is an important one to ask, on the basis that the "educational use" clients are
either looking to learn important programming concepts for themselves, or they will be
teaching these concepts to others through the use of the programming language. It is
therefore vital to establish which principles in particular ought to be prominent and well-
implemented into the system.

| shall now ask the stakeholders each of these questions, and record their responses. During the
interviews however, | may end up asking additional follow-up questions or requesting that a
stakeholder substantiate one of their responses.

Responses
| conducted face-to-face interviews with Oliver and Kiran, whereas Joe was

)

interviewed by Email, and | spoke to Klara over the phone in German,
translating her responses into English for the purposes of this document. These,
are the abridged findings...

1) Which areas of maths do you find yourself referring to most frequently, whilst programming?

e Just wanting to evaluate basic mathematical Expressions [2]

e Straightforward Boolean Logic (Kiran)

e Finding information from statistics; Mean, Mode, Median, Range etc. (Kiran)

e Geometry (Kiran)

e Manipulating Numbers in different Bases, and converting between them (Oliver)
e Bitwise Operations (Klara)

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

2) Which computer system(s) do you currently use (a) whilst programming, and (b) recreationally?
What are the architectures and operating systems of these computers?

e An x86-Based IBM PC-Compatible Windows Computer [3]

e _..Some of the stakeholders mentioned that their desktop computers are very powerful,
with multiple logical processors, and even graphics coprocessors for “C.A.D. or video
games”. The versions of Windows NT ranged from XP to 10.

e AniPad or Tablet, iOS and Android (Recreational). Kiran commented that he often uses
his iPad because it is “portable, quick, and easy to get out and use”.

e (Occasionally) A SmartPhone Handset (Recreational) (Kiran)

e Enterprise Servers, running Windows Server. “KVM (Keyboard, Video, & Mouse) Console
Access to the Server isn’t always guaranteed, and we might only have a Command-Line
Interface with the machine. The software might need to be able to handle this.” (Klara)

3) Which components of existing programming languages or systems do you find annoying or
cumbersome?

e Complex ways to perform ostensibly simple tasks. [2] Oliver mentioned the complexity
of using iostreams and put-to operators in C++, just to output text to the console. Kiran
mentioned the difficulty of navigating modern versions of Visual Studio, due to the large
number of different windows and controls.

e Programs are often difficult to Debug; there is no clear trace of actions taken. (Oliver)

e The language being “pedantic” (Kiran) about small details which shouldn’t have to make
a difference, such as capital letters mattering for variable names.

4) Which components or features of existing programming languages do you like and find useful?

e Simplicity [2] and the organisation or encapsulation of parts of the source code (Klara)

e Some advanced high-level features such as (1) Immutability and (2) Lambda Expressions.
These can help me to write safe and concise code. (Oliver)

e Something that allows the creation of elegant and even beautiful programs (Joe)

e Having lots of built-in libraries and functions “to do things for me” (Kiran)

5) ...And what, therefore, would you perhaps like to see implemented in this system, to aid in its
ease of use and functionality?

o “Potentially the ability to sub-divide the source code up into manageable blocks of some
sort. Functions or even Namespaces would be a good idea, if a little challenging to
implement” (Klara)

e A reasonable number of inbuilt functions and utility methods [2]

e Standardised and well-known procedural programming statements, which appear in
other languages too. In this way, users of the language will “become familiar with
common practice, easing their transition to other systems when they feel ready”. (Kiran)

e Potentially some integrated help, if there are any more complex components in need of
explanation.

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

6H) How frequently do you use programming languages for your own personal experimentational
and hobbyist purposes?

e (Quite frequently [3]
e QOccasionally [1]

7H) Where do you think a reasonable line can be drawn between hindering simplicity and needless
complexity, in the context of a programming language?

e “lthink it’s all about the structure of the system; if users can clearly see what to do,
where they should enter text, or which button they should press, then there is no
problem. Things tend to become needlessly complicated only when there is a poor
system of organisation” (Oliver)

e Having an overly-large feature set can be too complex [2]

e Having consistency is important for the user experience [2]

8H) Is there a particular style of programming [paradigm, nomenclature, or simply a set of
tendencies] that you lean towards, for experimentation?

e “ltend to want something quite high-level, with lots of pre-built functions available to
me, so that | don’t have to reinvent the wheel when it comes to doing something
simple” (Oliver)

e “l don’t like having to worry about small details when programming for
experimentation” (Kiran)

e ‘| often find myself using an almost functional programming style, focused around
expressions instead of statements” (Klara)

e “Choosing suitable names for the variables and other identifiers is often difficult,
because you might not have fully conceptualised that that variable is actually for yet”
(Joe)

9H) Are you satisfied by the programming toolset currently at your disposal?

e No [2]
e Yes [2]

6E) In your experience, what do you think makes some existing programming languages hard to
learn?

e The existence of ambiguities to those who don’t know the relevant rules. [3] Operator
Precedence (order) and Associativity (right or left side resolved first) was mentioned by
Klara. E.g. In “5+3 *8 /2 /5”, how does a beginner know whether the specific language
will execute the multiplication, addition, or division first — and even if they know that,
which of the two instances of the division operator would be evaluated first?

e The lack of important concepts being enforced at the basic level [3] E.g. “Python”
doesn’t make the user specify the DataType of a variable at its declaration. In fact, it
doesn’t even have a keyword for declaring variables. This makes the script very hard to
follow. (Oliver)

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

e The specific syntactical and grammar rules [2]
7E) How do you interact with the Programming Languages you already use?

e With a Keyboard and Mouse [4]

e With Mouse via drag-and-drop blocks (Joe)

e | have to open an IDE (VS) and type the source into a file [2]

e “Sometimes | use the mshta.exe or cscript.exe to interpret VBScript and Jscript straight
away, without having to create a project or anything first.” (Kiran)

8E) What, if anything, do you find cumbersome about this, and how might you more ideally wish
to use a programming language system?

e Example: “To experiment with some C++ | may have been thinking about, | have to open
Visual Studio, create a new Project, type the source into the file, which | then have to
save, before finally being able to run the script, only to be informed about a missing dll
and having to start all over again. It would be nice to be able to simplify this process, but
in the case of CPP, | think it’s really just a fundamental limit of the language” (Oliver)

e Example: JavaScript’s expression-based Console in Chrome facilitates the immediate
evaluation of expressions and function calls. This is very useful for quick testing and
experimentation. (Klara)

e | want a more direct way of getting the ideas in my head into code form. [2]

9E) What do you think some of the most important principles of higher-level programming
languages are, that need to be learnt in order for students to progress onto systems requiring a
deeper level of understanding?

e DataTypes [2]

e OS-Interaction; Exit Codes and Command-Line Arguments (Klara)

e Debugging principles; “getting a lower-level view at the high-level script you’ve written”
(Oliver)

e Condition- and count-controlled loops [3], If statements [2], and Variable Declaration
and Definition Clauses [2]

Analysing the Responses

Carrying out the interviews made it clear that, for the most part, the stakeholders’
. requirements for the application are actually not that complex or sophisticated.
\—— “Just wanting to evaluate basic mathematical expressions”, for instance, was one
£ of the key points from question 1. Stakeholders said that they just needed to be
able to type in a quick mathematical statement (E.g. “400 — (80 * 6)”) to work something
out for the program they are currently writing. In other words, the stakeholders want to be able to

use the programming language being developed here both as an assistive tool (for use whilst
working with another programming system), and indeed as a stand-alone development environment
for quick experimentation-style programs, and scripting tasks.

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

Several questions’ responses seemed to indicate come common trends. For instance:

e The different mathematical use cases, along with the comments about “simplicity coming
through organisation”, suggest that it might be a good idea to have a system of modularity and
classification in the programming language. Different components could be encapsulated into
their own “boxes”, making them easier to find and use.

e The clients mentioned wanting to have a number of predefined functions at their disposal,
several times throughout the interview. This is important because it extends the functionality of
the programming language, and facilitates the quick and experimentational style desired by the
stakeholders, as mentioned in questions 8H and 5.

e The research into the varieties of computer currently used by the clients (and which they
therefore would use the programming language on) suggests that a fairly wide variety of devices
must be supported, including different operating systems and CPU Architectures (or indeed,
Instruction Sets). These are MS Windows NT versions XP to 10 (KVM/GUI and 80-Column CLI),
Apple i0S, Google Android, and both x86 and ARM Processors.

e The allegedly cumbersome ways of performing simple tasks in other programming languages will
need to be abstracted with a layer of simplicity in this language. For instance, Input and Output
functions could be built-in keywords or methods. The stakeholders also reported that they feel
other languages can be needlessly “picky” or “pedantic” with features such as case-sensitivity
(Kiran), operator associativity (Klara), and difficult debugging processes (Oliver)

e The reported frequency of use for the system (with 75% saying that they would use the language
“quite frequently” (6H)) means that it will need to have a way to save any configuration and
settings the user has applied, ready for the next use.

e Consistency and a structured organisation are a significant principle sought by the clients, as this
aids in the ease of use, and extensibility of the system (the extent to which it can be extended,
and interoperate with other programs).

o The stakeholders commented both on the fact that “Having an overly-large feature set can be
too complex” and unwieldy, but at the same time, that “Having lots of built-in libraries and
functions” is useful and improves the speed of development, wherefore | will have to strike a
balance therebetween.

e The main factors affecting the ease of learning new programming languages (something a client
of this system would inevitably have to do) seemed to be a lack of syntactical, grammatical,
semantic, and conceptual consistency in some languages, and confusion about fundamental
concepts, often because they are not enforced at a basic level. DataTypes in Python (or the lack
thereof) was provided as an example. Operator Precedence and Associativity also seemed to
cause confusion on occasion.

e Unsurprisingly, the clients reported interacting with the programming languages they used, by
Keyboard and Mouse. They showed no real objection with this method, and acknowledged that
it would be appropriate for the system being development here too.

e Use of IDEs was also mentioned, and it was said that having to open one up and setup a new
project, just to write some code can be unnecessarily indirect, but that they do enable a feature-
rich development experience, which would be hard to achieve otherwise. Having some sort of
basic IDE — wherein the programmer can both write, execute, and debug their scripts — would be
suitable for this programming language.

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

In addition to this, however, it would be beneficial, according the stakeholder feedback, to have
a more flexible, dynamic, and immediate method of executing or evaluating expressions or
statements. This correlates with the comments made for the very first question concerning
mathematical expression calculation being amongst the most sought features of the product.

e Finally, in order to better prepare educational users of the language for move advanced systems,
it was established that the use of several fundamental principles had to be enforced in the
language. These, the stakeholders reported, include DataTypes, Process Exit Codes, Command-
Line Arguments, Debugging Principles, and standard procedural programming statements
(Loops, If Statements, Variable Declarations and Definitions).

| acknowledge that there is a certain level of irony in the fact that | will be using a Programming
Language inside of an IDE, to develop another Programming Language and IDE. This, however,
makes it all-the-more entertaining.

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

Existing Similar Products

1) Chrome’s JavaScript Console
Since one of the interviewees mentioned this product as a system they currently use for

experimentational programming, | have decided to take a closer look at it here.

Noteworthy Features

The console is quickly accessible from within the browser; the user need only press “F12” to
open the window whenever desired.

Aside from being able to input meaningful, executable statements of JavaScript such as
lAge = 5;]or[if (Is0ldEnough) { AllowEntry(); }], the console also permits the

programmer to simply enter an expression, and have it immediately resolved, based on
whichever variables and functions are accessible in the current execution context. Several
examples hereof can be seen in the screenshot of the product below.

Elements

Network » O

] ® | top v @ |-[1.f|'clatit:-n]

Consocle Sources

| All levels ¥

» !function () {console.log("Hello, World!™)}{);
Hello, World! VM1Z28:1

true

"

» "Edgar" + "Ate"™ + 5 + "Plums™ + 4 + "Lunch"
"EdgarAteSPlums4Lunch™

"

» "Edgar" + "Ate"™ + 5 + "Plums™ + 4 + "Lunch"

II "EdgarAteSPlums4Lunch2Day”

|

[Above] The DevTools JavaScript Console

Different parts of logic in JavaScript can be subdivided into different encapsulate units. For
instance, Functions are supported both as conventional named methods, and as first-class
objects for use with lambda expressions. This allows a series of instructions to be run
sequentially, just by invoking the function. JavaScript additionally supports its own object
mark-up format called JSON (JavaScript Object Notation), which further permits the
programmer to neatly organise different data. E.g. { GetName : function () { return|
"Ben"; } , Age : 17}|.

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

Google Chrome (which comes with this DevTools Console software) is available for almost all
operating systems, though the company is becoming increasingly selective about supporting
“older” operating systems such as Windows XP.

e The User Interface, though excessively modern, is largely comprehensible and clearly laid-
out. Syntax Highlighting also aids in the readability and discernibility of the source code.

Limitations
e One problem with the system — just due to what it’s actually intended for — is the inability to
save and open script files of one’s own (with any sort of ease).
e It also can’t be used on all of the computer types the stakeholders mentioned; there is no
Command-Line version, and Google Chrome does not include the DevTools Console on other
devices such as iPads or Android phones.

Components Applicable to My Product
e The ability to evaluate standalone expressions (This appeals to the stakeholders’ requests
for a system that can be used for quick and easy experimentation)
e The almost instant accessibility of the console (This aids in making the product good for
carrying out quick tests during one’s own program writing)
e The relatively clear user interface, with its menus and syntax highlighting

2) BaseConverter / BasedNumber Finder

This program’s main feature is being able to compute tables of numbers in different bases. It doesn’t
have any sort of integrated programming language, but provides some of the mathematical
capabilities the stakeholders are looking for.

Noteworthy Features
e (Can easily convert numbers from most standard bases into other bases
e Has Complements Finder Built-in
e Includes several Colour-Formatting Algorithms to graphically visualise the results of a
BasedNumber-Finding Query

[Below] The Main Window with the Fill dialog open

Fill. Single Number Converter.. Complements Finder..
Base Number (Denary)
10 11 12 13 14 15 16 17 18 13 20 21 22 3 24 25 26 27 28 29 30

EmE
oo |

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

[Below] Additional Program Features: The BasedNumber Finder, and Complements Finder

=~
BasedNumber Finder { 28 J Complements Finder &J
Target Base Denary Input: Input Numbers
19 120
Input Number: 1001
Find BasedMNumber
Input Number Base: 2

Desired Complement

() [Base - 1]'s Complement

Find Complement

Limitations
e There is no extensibility with the system; only the functionality hard-coded into it can be
run.
e The current version of the Program only runs on Windows (over .NET).

Components Applicable to My Product
e The mathematical features of converting between numbers of different positional notation
(place value) bases.
e The clear User Interface with the MenuStrip at the top.
e The fact that the program is just a singular exe file; it needn’t be installed with a setup utility.

3) CScript.exe / WScript.exe

Microsoft Windows includes a few built-in script interpreters for different languages, including
Batch, PowerShell, VBScript, and JScript. One of the clients mentioned that they use mshta.exe and
cscript.exe to run these sorts of scripts quickly and easily, so that they don’t have to create entire
projects for a quick experimentational test. Therefore, | will take a closer look at these interpreters
here. Incidentally, “wscript.exe” is the Windows Script Host (WSH) component for running scripts
using graphical input and output, whereas “cscript.exe” is for running the same scripts in a
command-line environment.

[Below] “Hello.VBS” open in a Text Editor

1 MsgBox "Hello, World!"™, 64, "Title"

[Below] Using “wscript.exe” to execute the Script File

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

Hella.VBS 22/04/202212:12 (...

Bl Select Administrator: C:A\Windows\Sy... | = = %

[Title =

reserved. |

gProject\Research>{ia sy s 0 WL

gProject\Research>

1 | n 3

Noteworthy Features
e Can easily be used run saved script files in either a windowed or command-line
environment.
e |s widely-available because it comes with the Operating System.
e [s extensible, as it even works with multiple programming languages (VBScript & JScript).

Limitations
o The script files must first be created and saved to disk before they can be run. This can be
annoying if the user wants very quick access for testing a line of code.
e Despite working on all versions of windows, it does not exist for other operating systems
such as iOS and Android.
e There is no convenient and integrated way to edit the scripts. One has to use another
program to accomplish this task.

Components Applicable to My Product
o Different components to execute scripts in different environments including both GDI-
enabled and Command-Line situations.
e Interoperability with standardised operating system mechanisms.

4) Visual Studio

Microsoft Visual Studio is an industry-standard IDE used worldwide by millions of software
developers. It too was mentioned several times throughout the interviews, and as such, | shall
evaluate some of its features and functionality.

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

Start Page - Micr
File Edit View Debug Team Data Tools Architecture Test Analyze Window Help
ISP G- % BRI =E2]9-0-L-B|p ua®

Toolbox

|5 Gk E 3o,

B9 Solution Explorer

4 General i

Micigsofts
There are no usable . A
Threarerowstie | CEY\istal Studior 2010 timate
Drag an item onto this
text to add it to the

toolbox. Get Started ~ Guidance and Resources Latest News

i
1 Connect To Team Foundation Server

[New Project...

@ Open Project...

Welcome Windows Web Cloud Office SharePoint Data

5| What's New in Windows Development

=1 Windows development is even easier with Visual Studio 2010.

Recent Pr’OjECIS 1 Overview of What's New in Windows Development
What's New in WPF and Silverlight

& VisualBASICDiscovery What's New in Windows Forms

VisualBASICDiscovery

[TonGen22

9 Yamadatchi

[% MouseGone32

ColourTest =

BASH

& PolygonCircles =— Learning Resources

|:?

Creating Windows Applications

[¥] Close page after project load —
[¥] Show page on startup

@ 0Ermors | 1\ 0Wamings | (i) 0 Messages

Description File Line Column Project

CORS B2 Clos.. [Test..

[Above] The Main Window with the Start Page open

Noteworthy Features

e Advanced debugging features including: Realtime Memory contents and Variables view,
Output Window, Errors List, Remote Debugging Server, .NET Exception Handling, and JIT-
Debugging

e Highly-customisable and versatile

o Helpful Syntax Highlighting and Keyboard shortcuts

o Well-designed, clear user interface, including identifiable coloured icons, and buttons with
self-evident functions.

[Below] Visual Studio’s Syntax Highlighting

180

181 End While

182

183 REM The Whileloop has stopped Iterating; The _RemainingCLAString$ is empty; all Arguments have bed
184 Return _ExtractedCLADataToReturnBuilder.CurrentState

185

186 Catch _Ex As Exception

187 Throw New Exception(“"The following Exception was thrown whilst attempting to Parse the Command-Li
188 End Try

189

190 End Function

191

192 E Public Class ExtractableCLAData

193

194 Protected InternalKeyValuePairs As CLAKeyValuePairCollection

195 Protected InternalSwitches As ObjectModel.ReadOnlyCollection(Of String)

196

197 = [Returns an Object of Type ExtractableCLAData, containing no Switches or KeyValuePairs|

201 Friend Shared EmptyInstance As ExtractableCLAData = (New ExtractableCLAData((New List(Of CLAKeyValuePd
202

203 "You can't have two keys which are the same.

204 [Public ReadOnly Property KeyValuePairs As CLAKeyValuePairCollection

205 H Get

206 Return Me.InternalKeyValuePairs

207 End Get

208 End Property

209

210 [Public ReadOnly Property Switches As ObjectModel.ReadOnlyCollection(Of String)

211 H Get

Limitations
e The software only runs on x86-based Windows (or — ostensibly — Macintosh) computers as a
full desktop application with the GUI. At least two of the stakeholders commented that they

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

may need to be able to use [the solution being developed herein] in a remote command-
line, or mobile environment.

e Arguably, although Visual Studio provides an indispensable toolset for any programmer once
understood, it can be challenging for a beginner to get to grips with.

Components Applicable to My Product

e C(Clearly, whatever product / end up producing will not be comparable in its feature-set to the
likes of Visual Studio; the scales of the two products are not even on the same order of
magnitude, and | am not a professional team of 500 full-time developers.

e However, an appropriate approach for this project is to realise that many developers (and
therefore stakeholders in this product) will be accustomed to programs such as Visual
Studio, and that the product being developed, should not — therefore — differ so wildly from
this as to be unfamiliar and hard-to-use.

Features of the Proposed Solution

The core component to be developed is an engine of execution for a Programming Language. A
carefully-considered set of rules concerning syntax, grammar, and structure will be created as a
formal specification for the programming language. The core “engine” component will need to be
able to take in some source code — compliant with this specification — and execute it.

This engine will then need to be implemented into a number of different execution environments —
namely, an IDE-resembling windows program with a GUI, a command-line script runner, and a web-
based console for entering and running code on, for — importantly — any device with a web browser.

Windows GUI "IDE" Windows CLI WebPage Console

Core Execution Engine

Only this segmented and hierarchical architecture can facilitate the use of the language on all the
platforms sought by the clients. The system will also include a range of specialist inbuilt
mathematical features, which, as a result of having conducted the interviews, can be delineated
(mostly) as the following:

e Evaluating standard mathematical expressions (e.g. “5+2 *9”)
e Working with numbers in different bases
e Boolean Logic operations

The research has also made it clear that the following programming features ought to be
implemented into the language:

e Data Types for Variables

e Functions, to facilitate the encapsulation of logical executable sections
e Commonplace procedural constructs including While and If statements

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

e OS Interoperability (Command-line Arguments, and Process Exit-Codes)
o Predefined functions for common tasks

These features have been chosen because the stakeholders placed an emphasis on desiring
simplicity in the system. One way in which this is achieved is with structure and organisation,
wherefore Functions and block-style statements (including [While] and [If]) will be features of the
language.

Features to facilitate “Experimentational Programming” are important in this product because this is
one of the primary use cases of it, along with its use in an educational capacity. For this reason, the
[built-in mathematical functions] and [predefined functions for common tasks] are on the list above
too.

Limitations of the Proposed Solution

Owing to the amount of time at my disposal to create this programming language, the main
limitation is likely to be the breath of the solution. (E.g.) How many built-in functions will be
available? Will there be additional encapsulative features such as namespaces? How many complex
operators can be used for the mathematical expressions? Nevertheless, the requirements listed in
the subsequent sections take into account the feature-set of an MVP (Minimal Viable Product),
which still meets the stakeholders’ needs and is founded on the research conducted.

Another limitation is likely to be an intrinsic level of some complexity in the system, despite the
requirement that it be simple. This is because any worthwhile programming language must be
sufficiently complex as to enable the programmer to develop at a reasonable pace, once familiar
with the system. At the same time, this language has the paramount requirement that it be simple
to use and learn. The compromises involved in meeting a balance herebetween are likely, therefore,
to constitute a limitation of the product.

Having to interact with the programming language in a conventional, predominantly keyboard-based
fashion (which was agreed upon by the stakeholders to be suitable) does of course mean that
people with certain disabilities, which make it difficult for them to type, may be unable to make full
use of the software. This problem does not, however, directly affect any of the stakeholders to
whom | have hitherto spoken.

Since | have not implemented any complex expression parsing in my programming before, this is
something | shall have to learn much more about. | have some initial ideas about how this can be
done with infix to postfix conversion, and stack-based execution, but the complexity of expressions
supported in the language will be to some extent dependant on my ability to write an expression
parser and evaluator of sufficient complexity, dealing with such difficulties such operator
overloading, precedence, and associativity, as well as brackets, unary operators, and embedded
function calls.

There may also be some security concerns with the language’s runtime engine; since it is a system of
such complexity, and because there are a very large number of edge cases and unaccounted-for
pieces of input, certain scripts may potentially cause insecure behaviour such as buffer overflows or
injection. However, since the system will run on top of .NET (clarified just below), for there to be any

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

serious vulnerability permitting system-wide damage, a vulnerability would need to exist in .NET
itself: something which is seldom discovered, and rapidly patched.

Hardware and Software Requirements

Microsoft® | have settled on using the .NET framework to build
this project. There are many programming
. N E I languages which can be used with this framework,

Framework but | will predominantly — if not exclusively — be
using Visual B.A.S.1.C. .NET.

This decision affects the software requirements for components of the proposed solution, inasmuch
as only x86-Based Windows NT computers will be able to host the “engine”, but it still means that
the stakeholders who sometimes use mobile devices will be able to load the interactive Webpage as
a means of accessing the Programming Language.

Hardware

e For the two Windows Implementations: an x86-Based [IBM PC]-Compatible ACPI
Computer, with standard HID peripherals including a Keyboard, optionally a Mouse, and
a Monitor.

e The .NET Framework (v4) also requires that the computer have at least a 1GHz
Processor, 512MB of Memory, and 5GB of free Disk Space.

e The Web Client only requires that the computer is capable of running a standard
(modern) Web Browser, such as Google Chrome v80+.

Software
e The aforementioned computer running, or being able to run, a version of Microsoft
Windows NT, versions XP to 7, with the .NET Framework, version 4.0 or higher,
installed.
e The Web Client will simply require a (Modern) Web Browser to be installed onto the
computer, supporting client-side scripts, and AJAX. Specifically: HTML5, CSS3, and
ECMAG.

Stakeholder Requirements

Further Meeting with the Stakeholders

| sent this Email to the stakeholders, to get them up-to-speed
with some of the developments which have occurred since the
interviews. | was also able to speak individually with two of the

four primary users.
Dear Stakeholders,

I have been analysing the feedback form the interviews we conducted, and have worked out
what some of the features of the end product will be:

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

e Animplementation of the Programming Language Runtime for both Windows
GUI, Windows CLI, and Web-Based clients

e A basic IDE with text-editing and script-executing abilities

e Built-in mathematical functions for based numbers, expressions, and Boolean

logic

e Standard procedural features including While and If Statements

e DataTypes for variables

e Functions, for encapsulating logic into sections

The Runtime (“engine”) for the language will be able to run only on x86 Windows over .NET,

but the inclusion of the Web Client will enable a version of the language to run on any

computer with a Web Browser, including of course the mobile devices you mentioned in the

interviews.

Ben

The stakeholders were pleased to hear about this progress, and had no objections to the features

listed. Their requirements for the product are therefore as follows...

v
<

Requirements for the Programming Language

Requirement

Explanation & Justification

An easy-to-use and learn programming
language, suitable for pedagogical use

Implements the requested specialist
mathematical features; BasedNumber
manipulation, Boolean Logic, Mathematical
Expression Evaluation

The concept of DataTypes is enforced

Allows the programmer to use standardised,
commonplace procedural programming
constructs including While and If Statements

To meet the needs of the clients, and be of any
real value at all, the system must be relatively
easy to use and pick up. This also aids in making
the product useful as an educational tool.

The primary point of specialisation for the
language is its integrated mathematical abilities

This concept is a significant idea for anybody
learning computer programming, and since two
of the stakeholders represent the product’s use
in an educational capacity, this feature is
important

This is important both for the educational use
cases, and the experimentational ones.
Experimentation can occur more easily when the
user is already familiar with some of the features
of the language, in this case because these same

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

Enables the programmer to evaluate singular
expressions without having to run an entire
program

Permits the programmer to divide programs up
into more manageable and organisable sections,
E.g. via Functions

The language is able to interoperate and
communicate with the operating system, E.g. via
Command-Line Arguments, and Process Exit
Codes

There are some useful pre-defined functions for
common tasks

Requirements for the Implementations

Requirement

features are implemented by many other
programming languages.

Such functionality would permit the user to
program in the desired "experimentational"
manner

The clients said that one way in which simplicity
(another requirement) can be achieved, is
through organisation and structure

This concept is another one which assists
newcomers to programming, teaching a useful
and important OS mechanism

This facilitates the experimentational
programming style, as well as making it easier
for any learners to more quickly write a program
to accomplish the task in question

Explanation & Justification

Runs under different OS environments and
computer types

[Windows GUI] Has a familiar, simple,
unconvoluted, User Interface with helpful icons,
and buttons with self-evident functions.

Some documentation and instructions
concerning use of the language. This is applicable
to all implementations, though there may be
some minor differences between, for instance,
the debugging features available on the Web
Client, and those of the Windows GUI Client.

[Windows GUI] The IDE should be able to edit
the text of a source file, and run it, from the
same Window or Program.

[Windows CLI] The executable should accept
Command-Line Arguments (CLAs) as a means of
specifying the script to be run (E.g.
|Inter‘pr‘eter‘ .exe /Run:Script. Ext|)

The stakeholders reported using several
different computer types in the interview. The
system will need to support these.

This contributes to making the software easy to
use, and organised

In order to make the system easy to use and
learn, users must have appropriate,
comprehensive, and understandable
documentation at their disposal

This integration provides convenience to the
user

This is a standardised OS mechanism, thereby
bringing familiarity to the user, and enabling
programs written in the language to be executed
automatically, E.g. by task scheduling in

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

Microsoft® Windows™

AN

Success Criteria

Criterium How to Evidence This
A Programming Language Formal Specification (LangSpec) Specification Document
Serviceable Language Features including: Screenshot & Source & Binaries
Data Types Screenshot & Source & Example
Predefined Functions (for common tasks) Screenshot & Source & Example
Encapsulative Units (E.g. Functions) Screenshot & Source & Example
Procedural Programming Constructs (While; If; etc...) Screenshot & Source & Example
OS Interoperability (CLAs & Exit Codes) Screenshot & Source & Example
Specialist Mathematical Features: Screenshot & Source & Examples
BasedNumber Manipulation Screenshot & Source & Example
Boolean Logic features Screenshot & Source & Example
Maths Expression Evaluation Screenshot & Source & Example

A Programming Language Runtime (engine) which can execute | Screenshot & Source

Scripts

[Windows GUI] An IDE with text-editing and script-running Screenshot & Source & Binary
abilities

[Windows GUI] A simple, familiar graphical design Screenshot

[Windows CLI] Takes a Command-Line argument for the script Screenshot & Source & Binary

to run
[Windows CLI] Returns the Exit Code of the Script just run Screenshot & Source
[Web Client] Runs on a variety of different browsers on Screenshots

different devices

[Web Client] Allows the user to enter source code into a text Screenshot & Source
field and thereafter execute it

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

Singular Expressions can be evaluated independently (without Screenshot
having to run a whole script)

Instructions and Documentation are organised and easy to find | Screenshot

The Language is easy to learn and use Get the stakeholders to learn and
use the language, measuring how
quickly they become accustomed
to it, compared to other similar
languages

These tables will be revisited at the end of §Development, when | have a prototype product against
which to use the criteria.

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

Design

Overview
This programming language project fundamentally involves two stages:

1) Delineate a Formal Language Specification for the Programming Language (in accordance
with the needs of the Stakeholders, and Requirements of the Hardware, Software, and Use
cases)

2) Implement a system to execute any programs written in the Programming Language, and
which comply to its specification. This system needs to run on all the computer types
declared by the stakeholders during the investigations (x86 Windows Computers for GUl and
CLI, and android mobile devices)

It would be impossible to perform the latter without having completed beforehand the former; a
runtime engine cannot be written without knowing what it is supposed to be running, and what
specific form and syntax its source code is supposed to be compliant with. Firstly therefore, | shall
determine the nature of the language, and thereafter, discuss its architecture (structure), and the
computational methods | will employ to execute it.

Formal Language Specification

Here | officially outline the specification for the Programming Language to be implemented. The
language is a Formal one which means that it is concise (= succinct) and unambiguous (= never
equivocal in meaning).

Choosing a Name

Before | go any further, it is important that | have a proper name for this project, because this will
help in labelling and identifying files and resources associated with the project, which improves
organisational efficacy.

| have settled on the name “DocScript” for the Programming language. “Doc-“
comes from the Latin “doctus” meaning “to teach”, as in doctorate or indoctrinate.

DS Since one of the primary purposes of the language is to be an effective and
approachable teaching tool, | feel that the name is at least somewhat fitting, and
not just chosen out of the blue. This claim — | fear — cannot justifiably be made of
most modern products and services.

The file extension for DocScript source is therefore “.DS”.

General
Universal characteristics of the Programming Language

Spec. Point Explanation & Justification

The language is not case- The stakeholders for the educational and hobbyist use cases wanted
sensitive (apart from an easy-to-use programming language. Programming languages
inside String Literals) wherein “True” is a valid Boolean literal but “true” is not, are simply

frustrating and do not lend themselves to a worry-free style of

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

development. In fact, some such case-sensitive languages encourage
programmers to use ambiguous and confusingly-similar variable
names such as “name” for a constructor argument and “Name” for a
corresponding Class Property member. | resent this nomenclature as it
is needlessly unclear for beginners, which is precisely what DocScript
is trying to avoid.

There are three The stakeholders wanted to use the language for pedagogic purposes,

DataTypes; wherefore it is important that the language implements some features
found in more advanced languages — for instance DataTypes. Without

String, DataTypes, a variable or expression’s value can be open to

Number, interpretation, and developing knowing the variety of data wanted by

and Boolean a Function or Operator is significantly easier and provides a
framework.

On the other hand, many programming languages implement a much
more strict and diverse type system than DocScript will. Whilst it could
be argued that more data types would be better, this would also
hinder and add unwarranted complexity to the solution. There is an
elegance to being able to perform a wide range of tasks with only a
few essential tools (or in this case, DataTypes).

These three specific DataTypes are rather essential and can essentially
be used together to represent any type of data desired. Each of the
Types has a corresponding literal (elucidated later).

All Variables have a default value, according to their DataType:
* <Number> 0
* <String> "
* <Boolean> False

o <F@> (An Empty Array)
One-dimensional Arrays Because it is common to have to process a list or collection of items in
are supported for each of a program, having arrays makes a programming language more
the DataTypes extensible. The stakeholders are seeking a versatile system, so this is a

suitable feature.

To retain the simplicity of the language however, | will keep the
bounds of these Arrays to one dimension. This prevents arguably
unnecessary complexity in the implementation runtime too.

There is a high degree of This greatly aids in debugging both for users of the language in

verbosity and logging debugging their own programs, and for me whilst writing the runtime.
during the execution of It also means that if a runtime error were to occur, the user would
Programs written in essentially have a detailed and highly-verbose stack trace telling them
DocScript. exactly what had happened thitherto to cause the error.

Executable statements and The stakeholders seek a modular and compartmentalisable system, so

instructions are contained | having all a program’s content in a singular file would encroach upon

in Functions this requirement. Therefore, being able to have multiple Function
Statements per file allows for better organisation.

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

Functions can take in a series of Arguments (each which its own
DataType) and return an instance of one of the DataTypes, or, return
“void” to indicate that the Function was a SubRoutine.

This principle of returning void is commonplace and can be found in
other languages such as C, C++, Visual C# .NET, and Java. Thus, it is
another example of how DocScript prepares its programmers for
eventual graduation to more advanced programming languages.

A Program is a collection Global Variables make it easier to have shared data between

of Functions and Global Functions, and the Stakeholders seek an easy-to-use and quick
Variable Declarations. development platform.

There must be one Since a DocScript Program contains a List of Functions (along with zero
EntryPoint Function per or more Global Variable Declarations), one of those functions must be
DocScript Program executed first. The Function has the identifier “Main” and must have

one of the following Function Signatures:

e Function <Void> Main ()
e Function <Number> Main (<String@> _CLAs)

The principle of EntryPoints can be found in languages including C,
Visual B.A.S.I.C. .NET, and even Python to an extent. It is another
example of how DocScript prepares its programmers for more
advanced programming languages, which was one of the stakeholders’
desires.

Programs can take in One of the Stakeholder requirements was:

Command-Line Arguments | “The language is able to interoperate and communicate with the
(CLAs) and return an Exit operating system, E.g. via Command-Line Arguments, and Process Exit
Code Codes”.

Because this is a standardised Operating System Mechanism, it is
important that a teaching tool such as DocScript enables this
mechanism to be taught, by implementing it!

Basic Interaction occurs Example:
through the built-in Input()
and Output() Functions Output("Hello, World!")

Returns the Input from the User:
Input("What is your Name?")

These provide a simple and easy means of obtaining Input and
delivering Output to the user. One of the Stakeholder requirements
was: “There are some useful pre-defined functions for common tasks”.

Therefore, by having these axiomatically-essential functions, basic

operations in the language become possible. The obvious names also
aid in meeting the Stakeholder spec of the language being easy-to-use.

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

Syntax
Physical form and grammar used in DocScript Source

Spec. Point Explanation & Justification
The Keywords are: The stakeholders for the educational and hobbyist use cases wanted

an easy-to-use programming language, so having an immemorable
Function litany of keywords (as seen in the likes of modern-day C++ with its 95)
If would be herefor unsuitable and unnecessary.
Else
While These six keywords are enough to facilitate fully Turing-complete
Loop functionality, but there are also some simply nice-to-have features
Return here such as the Loop keyword which works like this...

Loop (10)

Output("Hello, World!")
EndLoop

...to output <String> "Hello, World! " 10 times. This would otherwise
have to be done by manually setting up an iterator and interatee
variable with a While Statement. Therefore, this is a language feature
which makes DocScript suitable for the “experimentational” style of
programming desired by the stakeholders.

One of the Stakeholder requirements was:

“Allows the programmer to use standardised, commonplace
procedural programming constructs including While and If
Statements”

This is hereby facilitated through the If, While, and Loop Keywords.

Statements are closed with | Example:
an End{Statement} block:
Function <String> GetName (<Boolean> _WithSurname)

EndFunction If (_WithSurname)
EndIf Return "Ben Mullan"
EndWhile Else
EndLoop Return "Ben"
EndIf
EndFunction

This is a more suitable means of Statement closure than (E.g.) a closing
curly bracket (Brace) } because it enables the programmer to see
which Statement type if actually being closed. At the end of many C-
style language programs, one is often greeted with the following
atrocity:

}
}

.AAnother 10 Lines of this barbarism..

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

Comments are specified
with a # at the start of a
Line

DataTypes are specified in
Pointy Brackets < >

@ is used to indicate that a
type is an array

<String>
<Number>
<Boolean>
<Void>
<String@>
<Number@>
<Boolean@>

Square Brackets [] are
used to increase the
precedence of an
Expression Section

The same character is

}

In a language such as Visual B.A.S.I.C. .NET however, the same section
looks like this...

End Get
End Property
End Class
#End Region
End Namespace

...which is significantly more useful and readable. Therefore, DocScript
takes a leaf out of this book, and uses the Statement Ends following
the pattern End{Statement} E.g. EndLoop.

Example

The User’s Domain Username
<String> UserName "MullNet.NET\Ben"

Having comments at the source level is a much-needed feature of any
language because it permits the programmer to annotate and clarify
components of the script. This is suitable because the Stakeholders
require a tool for teaching, so they’ll be writing scripts and revisiting
them in due course, and needing to remember what the script does.
This can be achieved by adding a comment at the top of the script to
describe the file’s purpose. Incidentally, comments can only befall at
the start of a line, not mid-way through one.

“u_n

The char “@” was chosen on account of it resembling an “a” as in
“array”. It is not a valid identifier char, so is always unambiguous and
never part of the identifier (or in this case, DataType).

Of course, there couldn’t possibly be a “<Void@>", and <Void> is only
valid as a return type form a Function, not for a Variable’s Type,
because it represents the absence of data.

Other languages use < > with relation to DataTypes too, so this is

fitting and readies the programmers mind for exposure to alternative
programming languages too.

Example:
Output(5 + [2 -6 * [7 ~ 7]])

This is a very necessary feature, because the Stakeholders need
standard mathematical features, of which this is one.

Example:

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

never used for more than
one purpose

There are multiple
manifestations of numeric
literal:

9637426877

6543482740.9902
3AB4FF_16

Identifiers can only

() Function Call & Declaration
[] Expression encapsulation (Often ())

- @

Concatenation Operator
Logical And Operator (Often &)

Comparison Operator
Assignment Operator (Often =)

By using different characters, the benefits are two-fold:

e The programmer/learner realises that the two elements are
distinct and serve subtly or wildly different purposes. Whenever
they see an instance of the character, they immediately know
precisely what it’s being used for.

e |, the writer of the parser and lexer for the language, get to have
an easier time determining if everything is in the right place in the
source. Where ever there is a “(“, there should always be an
identifier directly before it. In other languages such as C, these
same brackets () are also used for expressions so there isn’t the
same level of certainty and regularity.

Of particular importance is the distinction between the equality and
assignment operators. These serve dissimilar purposes and yet have
sometimes the same char (E.g. “=” in Visual B.A.S.I.C. .NET). The
language clearly differentiates these at the syntactical level, which
meets the stakeholder need of creating an effective teaching tool.

This is therefore a usability feature.

Parenthetically, the Character $ is reserved for internal use by the
Parser, and is not valid as an Identifier, Operator, or Grammar Char.

One of the stakeholder requirements was:

“Implements the requested specialist mathematical features;
BasedNumber manipulation, Boolean Logic, Mathematical Expression
Evaluation”

To achieve this, | am therefore allowing numbers of different bases to
be directly represented through literals. This greatly improves the ease
with which numbers of different bases can be dealt with in DocScript
programs; no specialise function call is needed.

For instance, to represent the number 1244 in base 10, the
programmer types 12 or 12.0 or 12_10. To represent 1210 in base 2
however, the programmer can type 1100 2.

All numeric literals must therefore match this Regular Expression:

A((\d{1,10}(\.\d{1,4})?)|[A-Za-z0-9]{1,10} \d{1,3})$%

All Variables and Functions have a name associated with them, called

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

contain alphabetic an ldentifier. In DocScript, identifiers must match this Regular
characters and Expression:
underscores A_?[A-Z]+[A-Z_]*)$

This reduces ambiguity because identifiers cannot contain digit (/\d/)
chars, meaning they are impossible to confuse with numeric literals. If
identifiers could contain digits, then “A3B4FF_16" would be valid as
both an identifier, and a numeric literal. This would mean the language
were no longer unambiguous, which is not permitted in this formal
programming language.

LineBreaks are significant, | Because instructions end on LineBreaks instead of (E.g.) semicolons in
but Tabs and superfluous DocScript, LineBreaks are semantically-significant. However; this line...
Spaces aren’t

<String> Name : GetName()

...and this one...

< String > Name:GetName()

...are semantically identical despite their syntactical differences.

This is done to make the language more permissive and tolerant of
minor syntactical oddities or mistakes made by the programmer. This
aids in meeting the stakeholder requirement of being an effective
teaching tool.

This is important, because one of the stakeholder requirements was:

“An easy-to-use and learn programming language, suitable for
pedagogical (=teaching and instructional) use”.

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

Operators

= Built-in useful logic used in expressions along with their Operands...

Research

To begin defining the fashion in which DocScript Operators should work, | have conducted some in-

depth research on Operators...

Characteristics

Subtraction:
5 -1

Polarity Inversion:

=)

5+ 3 %2
#Answer: 11
(5+3) *2
#Answer: 16

Terminology
e Monadic, Dyadic, Triadic:
e Unary, Binary, Ternary:

Associativity

= when operators of the same
Precedence appear in the same
bracketed level, the Associativity
governs whether to evaluate from
left to right or vice versa. Left-
associative means from left-to-
right.

Example

Left-Associative
<Number> A =96 / 8 / 4
Same as:

<Number> B = (96 / 8) / 4

8 * 4

#Answer: 32

4 * 8

#Answer: Still 32

The fact that there are {1, 2, or 3} separate states available
The fact that something is in one of {1, 2, or 3} separate states

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

Expression Operators Table

With this research in mind, | have defined the DocScript Operators as follows:

Equality Comparison 2 (Anything) Boolean 1
& Concatenation 2 String String 2
- Logical Not 1 Boolean Boolean 8
! Logical And 2 Boolean Boolean 7
| Logical Or 2 Boolean Boolean 5
: Logical Xor 2 Boolean Boolean 6
+ Addition 2 Number Number 4
- Subtraction 2 Number Number 4
& Multiplication 2 Number Number 3
/ Division 2 Number Number 3
A Exponentiation 2 Number Number 3
% Modulo 2 Number Number 3
~ InvertPolarity 1 Number Number 8

Rules

The Operators are Assign (:) and the Expression (Expr.) Operators

Operators of the highest precedence are executed first

The Logical Operators are Short-circuiting

All DocScript Operators are left-associative.

All Unary Operators have their Operand to their Right

All Unary Operators must have the equally-highest precedence of all operators

All DocScript Operators only ever read form their operands; they do not write to them

Explanations & Justifications

All operator chars have been chosen as standard characters found on any I1SO keyboard.
Therefore, they are easy to type and do not require the memorisation of Alt Codes.

Where possible, the operator chars have been chosen in accordance with what is standard
practice for many programming languages. This makes meets the stakeholder need of the
programming language being easy-to-use, and is therefore a usability feature.

The unary operators have to be executed first (have the highest precedence) because the parser
will generally read from left to right, in accordance with the language’s operator associativity.

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

Instructions
With most of the language now clearly defined, | am able to see that these are the possible forms of
valid line:

Possible Line Forms within a Function:

e #Comment

e <Number> Age

e <Number> Age : 17 *E
e Age : 17 + 1 *E
e Return

e Return "Value" *E
e SayHello()

e SayHello("Ben") *E
e If (True) *E
e Else

e EndIf

e While (True) *E
e EndWhile

e Loop (10) *E
e EndLoop

*E = Includes an Expression (Expr.)

Therefore, there are essentially 8 types of possible instruction which could appear in a DocScript

Source file:

Instruction Type Example ‘
Variable Declaration <String> Name

Variable Assignment Name : "BenM"

Return To Caller Return Name

Function Call GetFullName(Name)

Function Function <String> GetFullName (<String> _Name)

If Statement If (Name = "BenM")

While Statement While (- [Name = "Ben"])

Loop Statement Loop (GetStringLength(Name))

The last four Instructions (emboldened) are Statements, meaning that they can themselves contain
other Instructions, recursively. Each Statement has its own variable scope, and therefore its own
Symbol Table. That makes the Symbol (Identifier) Lookup order the following:

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

Variable Lookup Order: Localmost - FunctionLocal - Global
Function Lookup Order: Global (Program - BuiltIn's)

An Example DocScript Program
Now that there is a Formal (= concise and unambiguous) specification for the DocScript language, |
have written and am providing this example program to show what it actually looks like:

Function <Number> Main (<String@> _CLAs)

#CLA Input looks like "/Name" "Ben" "/Age" "13"
#Get the Value for an Input()'ed Key

<String> _Key : Input("Sought Argument's Key:")
<String> Value : GetCLAValueFromKey(CLAs, _Key)

Output("Value: " & _Value)
Return ©

EndFunction

Function <String> GetCLAValueFromKey(<String@> _CLAs, <String> Key)
<Number> _CurrentCLAIndex : ©
While (_CurrentCLAIndex < [Array_MaxIndex(_CLAs) + 1])

If (Array_At(_CLAs, _CurrentCLAIndex) = ["/" & _Key])
Return StringArray At(_CLAs, CurrentCLAIndex + 1)
EndIf

CurrentCLAIndex : [CurrentCLAIndex + 1]
EndWhile

Return "No Value found for Key [" & Key & "]"

EndFunction

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

DocScript System Architecture
Because | now have a solid and objective specification for what the programming language is, | can

design the system which will run programs what are written in compliance with that specification.

At a Glance
On account of the stakeholders’ different intended use cases and correspondingly different

computer types, it was decided in §Analysis that the system would be broken down into a base
“engine” layer, on top of which would sit the various implementations. | provided this diagram:

Windows GUI "IDE" Windows CLI WebPage Console

Core Execution Engine

However, because this is too vague and lacks the detail required to carry out the implementation of
each of these four blocks, | have created this more in-depth architecture diagram:

Key
EndPoint ‘ ‘ Implementation
E——
| Transport Methad : Component SQL Server
' WebPage Console Database
o
| Log Window | | Main IDE Window ‘ ‘ Win32 Console ‘ g @
A;Endpoims... |
Windows GUI "IDE" Windows CLI F Server-side API

Log Events >

<

< a21ne5 50
Log Events
nog sa

N

Core Interpreter DLL

N
8
E|
g
Compiler KVP ASP .NET IEnumerable

Loggin Exceptions . T o -
Eging pt Extensions Serialisation Compilation Extensions

Explanations & Justifications
The core “Engine” is in reality to be implemented as a DLL (.NET Class Library) which | shall

hereinafter refer to as the DocScript Library DLL. This is a suitable way of writing the base logic
because a DLL provides reusable, maintainable (via successive in-situ recompilation) and scalable
(via the addition of supplementary DLLs) Modules, Classes, and Methods. | would not be

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

afforded this same level of adaptability were | to simply copy and paste the interpretation logic
from one implementation (E.g. the Windows IDE) to another (E.g. the Windows CLI).

e To meet the stakeholders’ need of the verbose logging, any log messages generated by script in
the Library DLL will be “piped” upwards to the implementation, for it to deal with. There is
however, an interesting and nuanced problem herein; how can these messages be displayed
one a Win32 Window, Command-Line Interface, and Webpage, all with the same piping-up
function? My solution to this is to use a delegate LogEventHandler which must be assigned a
function (Lambda Expression or AddressOf Function Pointer) by the implementer of the DLL. In
other words, the DLL will simply say “Here’s a LogEvent for you; do what you want with it”. Then,
the CLI, GUI, or WebPage (via the Server-Side API) can deal with the Log Message in whatever
fashion is applicable. This is a highly-extensible architecture as any implementation can be
made, including ones | have not hitherto conceptualised such as saving the LogEvent to a File or
the Windows System Event Log. For this reason, | have detailed the “Log Window” as an
endpoint component of the Windows IDE implementation (on the above diagram).

e The AJAX transport method for the APl to WebPage console is suitable because this reduces
server traffic and increases the speed with which distributed applications can be hosted. The
principle of AJAX is that the client (WebPage) makes an AJAX request such as
/API/Get .ASPX?Item=CurrentTime and this HTTP request doesn’t return a whole HTML
webpage, but instead, a serialised form of what was requested by the client, such as in XML;
<APIResponse CurrentTime="12:09" />.Thisistherefore a very scalable and adaptable
transport method, because almost any platform can make a simple HTTP request, and therefore
new features and implementations can be added in the future, without having to alter the
Server-Side API of which | speak.

e Having the DataBase as an SQL one is more complex to configure, but is significantly more
powerful because SQL queries can themselves contain much of the logic which would otherwise
have to be carried out by the server-side scripts. The main advantage however, is that if several
requests come in at exactly the same time to the API, then they can be handled without fear of a
DataBase write collision. Reading from a traditional File DataBase (such as a CSV or XML File)
would soon lead to the occurrence of a collision; no request would be able to use the file
because it would be 10-locked by another request.

To Compile, or not to Compile

| am principally faced with the choice of implementing the DocScript execution logic as either a
Compiler (as seen with E.g. C++) or an Interpreter (as seen with E.g. VBScript). A brief comparison of
these methods is as follows:

Interpretation Compilation

Comprehends the Source, builds an IR*, and Comprehends the Source, builds an IR*, then constructs
then executes it immediately machine code instructions for the IR, which are saved to
a binary executable file such as an EXE.

Execution phase is slower Execution phase is faster
Permit more in-depth debugging and More difficult to deconstruct program during its
viewing of program contents during the execution

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

execution

The entire interpretation process must The first two stages (Parsing and Lexing) need only
occur each time the user wishes to execute occur once, during the construction of the binary.

the program. This requires the source each Thereafter, the program can be executed as many times
time. as is desired, without having to look at the source again.

User must have a copy of the Interpreter on | User needn’t have any additional software on the
their computer computer

*IR = An Intermediate Representation (such as an Abstract Syntax Tree). In DocScript’s case, the IR is
an Instruction-Tree/Program-Tree (explained later)

DocScript will be an Interpreted Programming Language because the purpose of the language is to
provide a highly-verbose debugging-friendly extensible development platform, which interpreters
can achieve most effectively, owing to the fact that the source code is always available for
comparison to the IR, and that the IR remains in memory during the execution. This also allows for
other interesting possibilities including serialising the IR to XML and displaying a Program or
Expression Tree. This wouldn’t easily be possible with a compiled program.

Furthermore, the factors of speed, and requiring the interpreter on the user’s computer, are less
critical for this situation; of course DocScript won’t be the world’s fastest programming language,
but that’s not its purpose. In this instance, having extensive debugging abilities is more important
than not needing an extra interpreter binary on the computer.

The Three Stages of DocScript Interpretation

Most compilers [Below] have a Front End and Back End. The Front End Takes the source and
produces an Intermediate Representation (IR) such as an AST. The Back End takes in the IR, and
produces a machine code executable from it.

chars

Select Instructions

Allocate Registers

Semantics

IR

Machine Code

[Above] A Compiler’s Architecture

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

Explanation: Although DocScript isn’t a Compiled Language (at this point in time), it’s interpreter will
nevertheless have a Front End (to build an IR from Source) and a Back End (which takes in an IR, and
executes each instruction in Function Main straight away).

Justification: This architecture means that if | actually wanted to be able to compile DocScript into
EXE Files in the future, then all | would have to do, would be to take the already-existent IR, and
generate machine code to correspond to it. Thus, this is an extensible architecture, which accounts
for the potential needs of the post-development phase.

[Above] A Source-To-IR view of a Compiler

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

Parsing Lexing
Input: The Source Code String Input: The Tokens List
Function <Void> Main () Function Main
Output("Hello, World!") < (

Return Void)
EndFunction //, > {LineEnd}
Qutput: A List of Tokens Qutput: Instruction Class Instances

Function Main [New Function()]

< ([New IfStatement()]

Void) [New VariableDeclaration()]
> {LineEnd} [New ReturnToCaller()]

These are the three stages of DocScript
Interpretation.

The Parsing (other compilers might sometimes call

A 4

this scanning) and Lexing stages form the Front End,
whereas the Execution is the current Back End. This

segmented structure means that each component Execution

can be changed and updated and improved Input: Instruction Class Instances
independently of the others, as long as it keeps the [New Function()]

same interface. In other words, as long as the Lexer [New IfStatement()]

[New VariableDeclaration()]

w kes in some Tokens, and returns som
always takes in some Tokens, and returns some [New ReturnToCaller()]

Instructions (see the Instructions Table @ Formal

Language Specification) then it can really do anything Output: (That of the Program...)

it likes internally. Its workings can be entirely

#Each Inst ti is R
changed out, and the system as a whole would ach Instruction is Run()
continue to work because of the compatible #E.g. from HELLOWLD program

interface. This is again an extensible architecture, Hello, World!

suitable for this project because of the potential for

future expansion of the project in the post-
development phase.

Parsing & Tokens

Any comments which appear in the source (E.g. #This is a Comment) do not become tokens.
They are discounted at this first stage. A Token is a small structure-defined Object with a Value (from
the source), a TokenType (see below table), and a LocationinSource Property, which greatly aids in
debugging for the user, because they can see the exact location of an erroneously-placed Token.

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

Token Types

These are the [TokenTypels in DocScript:

Unresolved

StringLiteral

NumericLiteral

BooleanlLiteral

Keyword

DataType

Identifier

DSOperator

GrammarChar

LineEnd

StatementEnd

(Only used before a Token’s Type is determined)
"Value"

0110 2

True

Function

Number

Main

&

(

*

EndFunction

TokenType Regular Expressions
As a means of determining a TokenType, from a Token’s Value, | have written these Regular

Expressions:

o1
02
03
)
06
o7
08
09
10
11

Stringliteral
NumericLiteral
BooleanLiteral
Keyword
DataType
Identifier
DSOperator
GrammarChar
LineEnd
StatementEnd

AT $
~((\d{1,10}(\.\d{1,4})?)|[A-Za-2z0-9]{1,10}_\d{1,3})$
~A((TRUE) | (FALSE))$
A((IF)|(ELSE)|(WHILE)|(LOOP)|(RETURN)|(FUNCTION))$
~A(((STRING) | (NUMBER) | (BOOLEAN))@? | (VOID))$
M_P[A-Z]+[A-Z_]1*)$

A =181 NI INFIN-INE[7 [\~ [%] ~)$

AOVCINY INDINT <> 1N $

~(\r\n)$

~A(END((IF)|(WHILE)|(LOOP)|(FUNCTION)))$

Explanation: These TokenTypes help with the subsequent Lexing stage, wherein accounting for all

possible values of a Token would be impossible, and it is therefore necessary to have an indication of

what the type of a Token’s value is, without having to know what the value itself is.

Justification: Having many different TokenTypes means that these is less additional analysis needed

within the Lexing stage. For example, | could have just had a singular TokenType for both Keywords
(E.g. Function) and StatementEnds (E.g. EndFunction). However, then within the Lexer logic, |
would need to write an additional If Statement to identify where the StatementEnds are, each time
one was expected. This would be needlessly-indirect. Therefore, it’s best to have this healthy,
heterogeneous multiplicity of TokenTypes.

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

Parsing Algorithm Pseudocode
This is my pseudocode for what the parsing Algorithm (Source - Tokens) looks like “from 1000 feet”
as it were:

REM
REM DocScript Parsing Process
REM

REM 1) Initialisation
' - Ensure all LineBreaks are valid (CrLf)
' - Load in Lines of Source
REM 2) Segmentation
' - Blank out any #Comments or Whitespace Lines
- Ensure nothing already exists in the Source which matches the SLIT RegExp
- Replace StringLiterals with SLITs e.g. $SLIT_ 0%
- Generate Segmented Tokens:
- (For Each Line, and For Each Character thereof, evaluate if it's a WordChar
or SplitAtChar...)
- Remove any Null Tokens (Whitespace, etc...) (...Except from LineEnd Tokens)
- Ensure all remaining characters are valid (E.g. No SpeechMarks)
- Replace any SLITs with their original StringLiterals

REM 3) Classification
' - For Each Token, attempt to match it to a RegExp for its TokenType
- Ensure all Bracket usage is balanced (and), [and], < and >
- Ensure all Statement Openings and Closings are balenced (Function to EndFunction, etc...)

REM [_RawSourcelLines] -» [_CleanSourcelLines] - [_SegmentedTokens] -» [_NonNullTokens]
> [_TokensWithStringLiterals] -» [_ClassifiedTokens]

Lexing & Instructions

As can be seen in the Output of the Lexer, and the Input of the Executer, each type of Instruction
(see the Instructions Table @ Formal Language Specification) has a corresponding class in the
interpretation logic. These classes have their own Properties which differ for each of the Instruction
Types. The IfStatement class for instance, has a member called Condition, which is an expression to
indicate whether or not the IfStatement should run its Contents.

In other words, the Lexing occurs in the constructors for the Instruction Classes. When invoked,
these constructors are passed the part of the TokenList (from the Parser) required to create the
Instruction.

Instruction Classes & Interfaces

Justification: | therefore need some way to represent each of these Instruction Classes in a logical
object-orientated fashion. All the instructions have a method called Execute(), and all the
Statement Instructions additionally have a Property called Contents, as well as a private Symbol
Table called ScopedVariables.

Explanation: To implement these Instruction Classes, and ensure that they have the required
methods and properties within them, | shall therefore use the Object-Orientated feature of
Interfaces like this:

e ABase Interface IInstruction declares the Execute() Method
e A Child Interface IStatement Inherits IInstruction and declares Contents and
ScopedVariables

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

e Each Instruction Class then Implements the appropriate Interface and defines the methods
declared by that Interface

Diagrammatically, that relationship looks like this...

Instruction Classes Diagram

2 winterfaces»
IInstruction IInstruction IInstruction

1 =1 Attributes

=/ Operations

IInstruction @1 IInstruction
VariableDeclaration 1 DSFunc... 1 Functio... 1 VariableAssign... Vi 1
%! variableDeclaration 2l ReturnToCaller 2 FunctionCall 2 variableAssignment
=l Attributes (=] Attributes =l Attributes = Attributes
=l Operations =] Operations [=/ Operations = Operations
AV
2 «interfaces
IStatement IStatement IStatement
= Attributes
1 1
|=/ Operations
IStatement @ 1 IStatement @ 1

DSFunction |, 1 IfStatement LpdpStatement |, 1 WhileStatement |, 1
2 DSFunction 2l IfStatement 2 LoopStatement 2! WhileStatement
= Attributes (= Attributes = Attributes = Attributes
=l Operations [=I Operations = Operations =l Operations

(This, and several of the diagrams henceforth, were made with Visual Studio Modelling Diagrams, or the Visual
Studio .NET XAML and Windows Forms Designers)

Instruction Class Members
VariableDeclaration

<String> Name
<String> Name = "Ben" & ToString(7)

VariableAssignment
Name = "Ben" & ToString(7)

Identifier As String

Identifier As String InitialiserExpression As Expression

DataType As Type
DeclarationType As VarDecType {DeclareOnly, DeclareAndAssign}

InitialiserExpression As Expression FunctionCall
Output()
Output("value")

ReturnToCaller

Return

Identifier As String

Return "Value" Arguments As List(Of Expression)

ReturnType As ReturnInstructionType {ReturnOnly, ReturnWithvalue}
Returnvalue As Expression

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

These last four Classes Implement IStatement, which means implicitly that they implement linstruction too
(because IStatement Inherits lInstruction)

DSFunction IfStatement
Function <Void> SayHello () If (True)
Function <Number> Main (<String@> _CLAs)
Condition As Expression

Identifier As String
ReturnType As Type
Arguments As List(Of Parameter) WhileStatement
While (True)

Condition As Expression

LoopStatement
Loop (18)

LoopCount As Expression

Instruction Trees
The output of the Lexer is an IR (Intermediate Representation), which in DocScript’s case, is
essentially an “Instruction Tree”.

Here is an example DocScript Instruction Tree and associated Program:

=]~ Program

Function <Void> Main () E----Functian
If (System_GetTime() = "12:09") :

- IfStatement
Output("The Time is Correct") El JrErEnEn

EndIf . FunctionCall
Return f....ReturnToCaller
EndFunction

Lexing Algorithm Pseudocode

Because the Lexing occurs in the constructors for the Instruction Classes, those essentially contain
the Lexing Logic, and are each very much specific to whichever lInstruction they represent. This is
what the VariableDeclaration’s constructor looks like:

REM Source should look like:
REM <String> Name
REM <Boolean@> _Pixels : GetImageRow(9)

REM Tokens should look like:

REM [GrammarChar], [DataType], [GrammarChar], [Identifier], [LineEnd]

REM [GrammarChar], [DataType], [GrammarChar], [Identifier],
[ExprTokens...], [LineEnd]

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

REM Fields to Initialise:

REM DataType
REM Identifier

REM AssignmentExpr

LogLexingMessage("Began constructing a VariableDeclaration...")

REM Ensure that there are enough tokens to construct the IInstruction
REM Ensure that the last Token is a {LineEnd}
REM Ensure that the main Token Pattern Validator herefor is satisfied

REM The DataType should be derivable from the 2nd Token

REM The Identifier should be derivable from the 4th Token

REM If there is an AssignmentExpr, derive it from all Tokens after the 5th one (6t
h onwards...)

'Token 4 should be the Assignment Operator
'Tokens after Token 4 (5 onwards) should form the AssignmentExpr, up to the {LineE
nd}

LoglLexingMessage("...Finished constructing a VariableDeclaration Object for & Me.I
dentifier)

Explanation: The Tokens must for the most part follow a pre-defined syntax and order. In this
instance, the first Token must always be a <, but the next Token — the DataType — could be one of six
possible values. The Assignment Expression (for initialising the variable with a value) could appear in
so many forms that it is impossible to account for all of them. Therefore, my approach does not deal
with the Token Stream as a whole, but instead, processes the Tokens one-by-one.

Justification: This incremental, stepping-forward-through-the-tokens approach means that if there is
an erroneously-positioned or unexpected token, then it is possible to pinpoint precisely where that
token is, and report it to the user. Although simply matching the whole token stream against a
Regular Expression or TokenPatternValidator would be easier, it would not provide this level of
verbosity.

Execution & I/0 Delegates

This, the third in and final stage of DocScript Interpretation, is where a fully-formed Instruction Tree
IR is executed, starting with any Global Variable Declarations, and followed by the Function Main
EntryPoint. As can be seen from the valid EntryPoints in the Formal Language Spec., the program can
take in Command-Line Arguments (forwarded by the Library DLL Implementer) and Return an Exit
Code (0=Okay; -0=Error).

Because each Instruction implements the Execute () method, and each IStatement Instruction calls
Execute() on allits child Instructions (in its Contents Property) recursively, only the top-most
Instructions inside any Function need to be executed. By design, the recursive nature of the
Instruction Tree does not need to be dealt with by the executor.

The ExecutionContext Class [DocScript.Runtime.ExecutionContext]
The DocScript Library DLL is implemented into three different application forms: The Command-Line
Interpreter, the Windows IDE, and the Web Console. When running under each of these contexts,

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

the built-in Input () and Output() Functions (see the Formal Language Spec.) need to do different
things. For instance, in the Command-Line Interpreter, Output () should write text to the Console.
In the Windows IDE however, it should show a graphical Win32 MsgBox-style Window to the user.
This creates the problem of how to handle the different Input and Output modes at the Library DLL
level.

Explanation: My solution to this problem is to have an ExecutionContext Class, which is passed in to
the Execute() method of an IInstruction, and provides an InputDelegate, OutputDelegate,
and RootFolder for the execution of the Instruction and its Children. Its declaration would therefore
look something like this:

Public Class ExecutionContext
Public ReadOnly RootFolder As IO.DirectoryInfo
Public ReadOnly InputDelegate As Func(Of String, String)
Public ReadOnly OutputDelegate As Action(Of String)

End Class

Justification: This design choice has the effect of allowing the DLL implementer to choose what do to
when the Input () and Output() Functions are called from within the DocScript Program. It is
therefore an extensible design satisfying the needs of all three implementations, as well as allowing
for furtherance of the Input/output methods on the part of the DocScript programmer.

In addition to an ExecutionContext, the Execute() methods require a Stack of Symbol Tables
(Global, FunctionLocal, and then one per Statement) and return an ExecutionResult, which
contains data about whether or not to Return to the caller, and if there is an associated Return
Value. That makes the IInstruction.Execute() Declaration look like this:

GetSurname("Ben", 17) & Ending & IsAllowed()

Other Key Classes
Aside from the Parser, Instruction Classes, and ExecutionContext, the following are some of the most
important Classes in the Library DLL.

Expressions [DocScript.Language.Expressions.IExpression]
There are a number of shared constructs which all Instructions need to be able to construct. One of
these is an Expression, which —in DocScript — is defined as:

“A resolvable collection of Operators, Literals, Variables, and FunctionCalls, which produces a
value”

Example valid DocScript Expressions include: (One per Line)

"Hello, World!"
23.6663

True

"Hello" & ", World!"

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

"Hello, " & GetName()

"Hello, " & GetFullName("Ben " & "Mullan")
ToString([5 + ~4]) & "9" & ToString(-True,False)
[512 +6 - 7.4 ~ 3 ~ ~G()] > ~ 10110101 2
GetSurname("Ben", 17) & Ending & IsAllowed()

To represent these programmatically, | have designed a system of Interfaces and Classes to
represent different Expression Components:

-OperatorBased
FunctionCall
" Literal

\ Variable

Then, to construct an IExpression Tree (ExprTree) from Tokens — something several of the Instruction
Class constructors will need to do — the utility Function ConstructExpressionFromTokens() is
called. Here is an example of such an Expression Tree:

And here is the corresponding RAW Expression:

GetSurname("Ben", 17) & Ending & IsAllowed()

The most obvious remaining question is therefore: How can an ExprTree be constructed from a
RAW Expression? After some thought, | came up with the following solution:

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

ExpressionTree Construction Process

Raw: 5 + 9 - [GetAge() ~ 1101_2] * Take(Age)

LBL: Lit + Lit - [BracketedExpr (3)] * [FunctionCallExpr (1)]
IoTe: Lit + Lit - [OperatorExpr]

I0T1: [OperatorExpr] - [OperatorExpr]

I0T2: [OperatorExpr]

Explanation: With a Linear Bracketed Level (LBL) constructed, we only need to worry about the
operators and their precedence, because we know, that the contents of the BracketedExprs and
FunctionCall Arguments must be resolved first. Collapsing to Intermediate Operator Trees (I0Ts) is
the subsequent stage whereby the operators with the highest precedence are the first to be
collapsed into OperatorExprs. This eventually forms a Complete Tree, free from any LBL Placeholders
(formerly for the Operators, BracketedExprs, and FunctionCalls).

Justification: By firstly forming the Linear Bracketed Level, a layer of abstraction is applied which
permits the collapsing of the LBL into an operator tree. Without the LBL, all Tokens of the Expression
would be exposed, which would render impossible coherent lexical analysis; the lexer would not
know if a given Token is part of the current tree node, or a child one. This is the case because in the
expression-constructing For Loop, the lexer only sees one Token at a time; it cannot contextually and
peripherally comprehend the entire expression simultaneously.

Realisations:

¢ Resolve()ing an Expression requires all the same resources as Execute()ing an Instruction;
Symbol Tables are needed for Variable and Function Lookups

e We don’t actually need to know what the value of any of the expression components are, for
the purposes of constructing the Expression Tree. All we care about at that stage is which
token is an Operator and which a Literal or a Variable etc...

e The operators with the lowest precedence will be the highest-up in the Tree

(I shall be further elucidating the ExprTree construction process during the Development
Stage, by means of source code examples...)

Programs [DocScript.Runtime.Program]
This contains an array of Functions and Global Variable Declarations from the DocScript Source.

Explanation: When an Instruction Tree has been created (see the earlier example), it is loaded into a
Program Object, ready to be executed. This class also handles the serialisation of a Program to XML,
and the forwarding of Command-Line Arguments and the Exit Code.

Justification: Without the Program Class, the Functions and Global Variable Declarations would be
floating around in Global Arrays. This would make it very difficult to pass around a DocScript
Instruction Tree. In fact, this mechanism means that there can be multiple DocScript Programs
loaded into a single implementation instance, which wouldn’t otherwise be possible.

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

Key Algorithms

| have drafted these out in Visual B.A.S.I.C. .NET instead of some made-up pseudocode syntax,
because it is more consistent (...and | can actually run and thereby test them during subsequent
stages of development!).

The Stack-Balanced Algorithm

I will use this for ensuring that the Brackets () [] < > are well-balanced in the input Source. |
also use the same logic for Statement Openings (E.g. Function) and Statement Closings (E.g.
EndFunction) to ensure that they are properly and equally provided in the source. (Also called the
Bracket-Stack Algorithm)

Public Function ContainsWellBalencedPairs(Of _TItems)(Byval _AllItems As _TItems(), ByVal Paramérray _Pairs As Tuple(of _TItems, _TItems)()) _

As Boolean

'Contains only Items which are also present in the _Pairs (E.g. only the Brackets [] {} <> out of all the Source Tokens)
Dim _JustTheRelevantItems As TItems() = { _
From _Item As _TItems In _AllTtems Where (_
_Pairs.Any(Function(_Pair As Tuple(Of _TItems, TItems)) (_Pair.Iteml.Equals{_Item)) OrElse (_Pair.Item2.Equals{_Item))) _
) Select _Ttem _
).ToArray()

Dim _TtemsStack As New Stack(0f _TItems)()
Dim _NoOpeningComponents, _NoClesingComponents As UInt32

For Each _Item As _TItems In _JustTheRelevantItems

'Was advised te do this by VS 281@. Sure.
Dim _LambdaCopyOf Item As TItems = _Ttem

REM If we have an Opening Component, Push() it onto the Stack
If _Pairs.Any(Functien(_Pair As Tuple(Of TItems, TItems)) _Pair.Iteml.Equals(_LambdaCopyOf Item)) Then

_TtemsStack.Push(_Item) : _NoOpeningComponents += 1UI

REM If we have a Closing Component, find out if _ItemsStack.Pop() produces the corrosponding Opening Component
ElseIf _Pairs.Any(Function(_Pair As Tuple(Of TItems, TItems)) _Pair.Item2.Equals(_LambdaCopyOf_Item)) Then

'Get the Pair which contains the corrosponding Opening Component for cut Closing Component
Dim _Pair_WhereforWeHaveClosingComponent As Tuple(Of _TItems, _TItems) = _
_Pairs.First(Function{_Pair As Tuple(Of _TItems, TItems)) _Pair.Item2.Equals(_LambdaCopyOf_Item))

'Now see if the Pop() produces the same Opening Component as we have in our Pair

"(Additionally, if the Stack is empty, then the Items aren't well-balenced, because we just hit a Closing Component
which(didn) 't follow a previous corrosponding Opening Component)

If (_ItemsStack.Count = 8) OrElse (Mot _ItemsStack.Pop().Equals(_Pair_WhereforWeHaveClosingComponent.Iteml)) Then _

Return False

_NoClosingComponents += 1UI
Else
Throw Mew Excepticon("An Item was not recognised as either an Opening or Closing Component™)
End If
Next
REM Now determine if there is anything left on the Stack.
REM The only things on there could ever be Opening Components, because that's all we ever Push()

If Net (_ItemsStack.Count = @) Then Return False

REM If we're here, then all Opening and Closing Components must have been balenced, because we haven't yet Return'd
Return True

End Functicn

[Above] The ContainsWellBalencedPairs-of-Tea Algorithm (Included in DocScript (.sIn) Solution)

Explanation: The Algorithm works like this:

Declare a _TItems Stack

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

For Each Item In _JustTheRelevantItems
If the Item is an Opening Component (_Pair.Iteml) then Push() it onto stack
If the Item is a Closing Component (_Pair.Item2) then Pop() stack and if
the popped Item is the matching Opening Component then fine, but otherwise

the Items are not balanced

After complete traversal, if there is an Opening Component left in stack then the
source is not balanced

Justification: | had originally thought that | could just get the number of Opening Brackets, and then
the number of Closing Brackets, compare them, and Throw an Exception if they weren’t equal.
However, | decided to implement this method using Generics so that | could use it for both the
Brackets (which are Chars) and the Statements Pairs (which are Strings). The algorithm makes sure
that the _Pairs components are opened in a balanced and in-order fashion. E.g. if done with
brackets, then "([])" would be valid, whereas "([)]" would not be (even though there are the same
number of brackets and squares in the latter).

The Unique Elements Algorithm
| will use this when adding items to the Symbol Tables. Within a given Symbol Table (SymTbl), all
Identifiers must be unique; they act as the Primary Key.

Public Function AllElementsAreUnique(Of _TElement)(ByVal _Array As TElement()) _
As Boolean

Dim _HashSet As HashSet(Of TElement)
_HashSet = New HashSet(Of _TElement)(_Array)

Dim _LengthsMatch As [Boolean]
_LengthsMatch = (_HashSet.Count = _Array.Length)

Return _LengthsMatch

REM Or, in one Line:
Return (New HashSet(Of _TElement)(_Array)).Count = _Array.Length

End Function

The Function evaluates whether or not each Element in the _Array is unique. In other words, False is
Returned if two or more elements are the same. This works because a HashSet (HashTable) cannot
contain two identical elements, because their position-determining hashes would be the same.
Therefore, if the size of the HashSet is the same as the size of the original Array, then no shrinkage
has occurred during the HashSet construction, and all elements in the _TElement Array are unique.

Key (Global) Variables

To recap: | have herebefore explained and justified the need for several of the most important
Classes in the solution; Parser, Token & TokenType, linstruction & IStatement, |IExpression and
Program. Here, | explain the purpose of some of the key Variables in the Solution:

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

Variable

Description & Justification

Validation

Public Shared
DocScript.Logging.
CurrentLogEventHandler

As System.Action(Of
DocScript.Logging.LogEvent)

Public Shared

DocScript.Logging.
ProcessDebugEvents
As System.Boolean

Private Shared
DocScript.Logging.
BuiltInLogEventHandlers.
LogWindow_

As
DocScript.Logging.LogWindow

Private Shared ReadOnly
DocScript.Runtime.Parser.
TokenTypeToRegExp_Table_
As System.Collections.
Generic.Dictionary(Of
System.String,
DocScript.Runtime.Token.
TokenType)

Public Readonly
DocScript.Runtime.
TokenPatternValidation.
MinimumRequiredTokens
As System.Collections.
Generic.Dictionary(Of

(As previously mentioned) The value of
this variable is assigned by the
implementer of the Library DLL, to a
Function Pointer, where the target
function processes the LogEvent in
whatever method is applicable for the
implementation. It is needed in order to
avoid having to hard-code a Logging
Delegate into the Library DLL, which
would be bad programming practice, and
mean that the implementations would
all have to show LogEvents in exactly the
same way.

Indicates whether or not LogEvents with
the Severity Debug are processed by the
CurrentLogEventHandler. This is needed
because the number of DebugEvents
produced can be so large, that the
performance of the application is
actually impeded by logging them all.
Because the DebugEvents are not
required during normal usage of the
Interpreter, it is very prudent to be able
to disable them to improve performance
and make the other log messages not
entirely inundated.

Holds the one instance of a graphical Log
Window (for the Windows IDE’s
LogEventHandler) for the entire
implementation instance. Without this,
the LogEventHandler would have no way
of knowing if a LogWindow had already
been instantiated.

Provides a runtime-initialised Dictionary
of the 11 TokenTypes to the Regular
Expression responsible for detecting
each TokenType (see @ TokenType
Regular Expressions). Without this, a
messy entanglement of If Statements
would have to be used.

Provides a runtime-initialised Dictionary
of the 8 Instruction Classes’ Types to the
lowest number of Tokens required to
construct one of those Classes. This acts
as an initial layer of validation on the

(None needed — apart
from ensuring that the
Value isn’t Nothing
(nullptr) before reading
it. This small check will
be done in the
SubmitLogEvent()
Method with a simple If
Statement)

(None needed; the value
can only possible be
True or False — both of
which are completely
fine)

(None needed; either
the value is Nothing
(nullptr) because GUI
Logging is not is use, or
it’s a LogWindow Object)

(None needed; the
Collection Type is
runtime-initialised, and
is ReadOnly so no
assignment can occur to
it)

(None needed; the
Collection Type is
runtime-initialised, and
is ReadOnly so no
assignment can occur to

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

System.Type, System.Byte) constructors for the linstruction Classes, | it)
and without it, a NullReferanceException
could be Thrown when attempting to
read a Token which doesn’t exit.

(There are very few Global Variables in the application 1" because it is bad programming practice to
use them in an Object-Orientated project such as DocScript. The preponderance of data are stored as
local variables within Functions and Subroutines and Classes.)

Namespaces
The aforementioned key Variables and Classes are organised into a tree-like structure of
Namespaces within the Library DLL. Here is a diagram of what that looks like:

R

.

“ {} Docscriptruntime © {} DocscriptUtiiies M
~ el ; y - ; .)
_ V.4 _ _ Y —

{ The Left side of the Namespace Tree

ik

— —— o — L — .
A B P Y 4 Y
{} DocScript.CompilerExtentions {} DacScript.Exceptions {} DocScript.Logging

Justification: These “Folders for Classes” significantly improve the organisation of logical resources
(Classes, Structures, Enums, Delegates, and Modules) within a large project such as DocScript.

Without them, there would be simply a disjunct coagulation of .NET Types without any easy way of
locating them.

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

Here is an (abstracted) view of the contents of the two main Namespaces, Language and Runtime:

‘ (MI) = MustInherit (I) = Interface Blue = BaseOnly Pink = Class Yellow = Module Orange = Enum ‘

Token Parser
Value As String GetTokensFromSource(ByVal String)

Type As TokenType

M

ExecutionContext Program

InputDelegate Run{ CLAs) As ExitCode
OutputDelegate New(ByRef Tokens())
RootFolder FromSource(String)
BuiltinFunctions Functions

(CLIDefault, GlobalvarDecs

WhileStatement GUIDefault)

LoopStatement

SymbolTable {Dictionary(Of String, SymbolTableEntry)}
Item()

SymbolTableEntry SymbolTableEntryType
EntryType As SymbolTableEntryType || {Variable, Argument, Function}
DataType As Type
Vellne fu Ol BuiltInFunction

RunFunction{Arguments...)

DSBoolean

OperatorBased

FunctionCall

Literal

Variable

Piecing It All Together!

With an explanation of what many of the individual key components do now written, | shall
demonstrate how a DocScript Program can be easily constructed from the raw source. This is all that
the implementer of the Library DLL needs to type:

'Log via the Default LogWindow

DocScript.Logging.lLogUtilities.CurrentLogEventHandler = _
DocScript.Logging.BuiltInLogEventHandlers.GUIDefault

'Raw

Dim _Source As [String] = "..."

'Parse

Dim _Tokens As DocScript.Runtime.Token() = _
DocScript.Runtime.Parser.GetTokensFromSource(_Source)

'Lex

Dim _Program As New DocScript.Runtime.Program(_Tokens)

'Execute
_Program.Run({})

Justification: The algorithms | have designed form a complete solution because:

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

The Tokens provide a very useful layer of abstraction on top of the Raw Source, but still provide
access to the location that each component occurs at within the source via the Line and Column.
This is very useful for the next stage (Lexing) because it means that the lexer algorithms don't

have to traverse the source character-by-character, which would be error-prone and very slow!

e The Program Object makes it easy to load in an array of Tokens (a Runtime.Token())and
execute the Instruction Tree created. Without this, the recursive nature of the Instruction Tree
would mean that a complicated series of individual function calls would have to be made. With
my current design however, each top-level Function's output feeds into the next; Source =
Tokens -> Program.

e Having the CurrentLogEventHandler assignment at the top means that the Logging mode
need only be specified once for the entire application. This simplifies an otherwise complex
process.

The DocScript Implementations

The DocScript Library DLL (whose architecture is fastidiously detailed hereabove) will be
implemented into three usable implementations; the Command-Line Interpreter, Windows IDE, and
Web Client (DS Interactive). This Use Case Diagram shows how each implementation might be used,
based on what the Stakeholders have said so far:

«subsystems «subsystems»
DS Command-Line Interpreter DS Windows IDE and Web IDE

Remote Script execution . _--——---“":_*I.lj_“-- Script Debugging for

on network Server from Educational Purposes
CommandLine Client

Mathematical Expression
Resolution

Script Execution for individual
and Administrative purposes

Interactive Multi-Client
Execution

The Windows IDE (DSIDE.EXE)
AT At its rudiments, this implementation has a Window with a TextBox for DocScript

DS

IDE

source to be typed into, and an Execute Button to interpret that source using logic
from the Library DLL.

The Criteria and Requirements for the Windows GUI (DocScript'°t) were:

o [Windows GUI] An IDE with text-editing and script-running abilities
e [Windows GUI] A simple, familiar graphical design

With these in mind, | have designed this {, as the Main Window:

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

User Interface Modelling
This mock-up was made with the Visual Studio XAML Designer and .NET Ribbon SDK:

Home ViewPlus Program Debug
3 New.. l I A E X ’ £ Parse EiZoom In
=2 Open... 5= Cof % Construct | $3'Zoom Out
Save Insert Code Run

H Save As.. [F] Paste Snippet.. (F3) s Execute ﬂ Full Screen
File Edi Interpretation View

Function <Mumber> Main (<String@> _CLAs)

#Input locks like "-Name" “Ben"™ “-Age™ "13"
#Get the Value for an Input()'ed Key

<5tring> _Key : Input{"Argumsnt Key:")
<String> Value : GetCLAValusFromkey(Key)

Output({“Value: " & _Walue)
Return @

EndFunction

Function <5tringr GetCLAValueFromKey(<String@> _CLAs, <String» _Key)

<Number> _CurrentCLAIndex : @

While {_CurrentCLAIndex < [Array_MaxIndex(_CLAs) + 1])
If (Array_At(_CLAs, _CurrentCLAIndex) = ["-" & _Key])

Status: Idle | 28 Line(s) | Line: 10, Col: 27 | Zoom: 100%

These are the other Ribbon Tabs:

I — vy
Home ViewPlus Program Debug

3 Foom: (1) Skew: (0] Rotate: (0) w

Reset :| :| :| Animate
All

Globa Zoom Skew Rotate

|
Home ViewPlus Pragram Debug

®
Apply Syntax Generate
Highlighting Program Tree...

Analyse

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

Home ViewPlus Program Debug
Show DocScript Log A

— Process Debug Events -
View Symbol) Launch Standalone
Tables... Use MsgBox Logging Expression Resolution Utility...

Variables DocScript

An About Dialog:

.
About DocScript (IDE) [

DS\windows|DE

Version 1.3.1.0
DocScript (C) 2022
Ben Mullan

DocScript Windows |DE Executable. Create, -
Edit, Analyse, and Debug Scripts with ease. Builk
an NET v4.0 2010).

A Help Window:

.
B Docscript IDE: Help! 5

Worth Moting:
- Type _ to bring up DS Intellisense

Command-Line Argument Help:

Description:
DocSeript Windows Integrated-Development-Environment. Create, Execute, and Analyse DocScript Programs.

Examples:
D5IDE.exe /OpenSourceFile: X \Hello\world DS

Argument Usage: (Keys are case-insensitive)
10 penSourceFile:<Value: — (Optional) [Datum] A path (relative or absolute) to a DocScript Source-File
/Run — (Optional) [Action] Specifies that the DocScript Program in the file from /OpenSourceFile:<value: should be Run immediately.

(Consult the above images for what the following GUI Components look like...)

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

GUI Component Explanations & Justifications

GUI Component Explanation & Justification
Run RibbonButton The clear colour icon and standardised Keyboard shortcut herefor
make this an easy-to-use feature, and it is in an obvious and well-
labelled location.

When interpretation begins, all controls on the Window will be
disabled, to ensure that no other buttons are pressed whilst the
program is busy interpreting the script. This is a form of validation.

Source RichTextBox This control is clear and large so as to be easy to click on and enter
text into.

InsertCodeSnippet This makes is quick and easy for the user to start building DocScript

RibbonButton programs. Amongst the possible insertables will be EntryPoint
Functions, Statements, and full Sample Programs.

GenerateProgramTree This button opens a new window which calls

RibbonButton Program.GetProgTreeXML() to render the program onto a TreeView

control, similar to the example provided @ Instruction Trees. It is a
useful feature because it facilitates in-depth analysis of the program
being written.

Status StatusRibbon This control provides at-a-glance data concerning the current state of
the program. It is needed because it indicates to the user that the
program is busy, during interpretation, by means of the text “Status:
Parsing...” and some percentage on the adjacent ProgressBar.

Where’s the Validation?

In choosing an appropriate variety of Control types, the need to additional validation has been
mitigated. For instance, although the Zoom Slider could have been designed as a simple TextBox,
into which a number could be entered, this would needlessly require supplementary validation:
ensure only digits (0-9) have been entered; ensure there are an acceptable number of decimal
places; ensure the value is in a valid range. Because it is a slider however, all these checks are — by
design —implemented into the control and how it can be used.

Axiomatically, the source text from the RichTextBox is — as described in the Parsing and Lexing
sections - validated heavily when it is interpreted. Other areas of the DocScript system do also some
require validation, which is covered later herein.

Usability Features
To make the application easier to use,

Usability Feature Description & Justification

A profusion of Coloured Icons These make the window easy to visually navigate, and
aid in the user being able to quickly see which button
they wish to click. Monochrome icons, on the other
hand, would need to be stared at and deciphered,
before any vague sense of their purpose could even be
derived.

Zoom, Full Screen, and ViewPlus features To make the source text easier to see, the zoom slider
increases the scale of the text. This can be useful for
people sitting far away from the monitor, or with poor

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

eyesight. Example:

=) ==

[Function <Number> Main 4
(<String@> _CLAs) =

#Input looks like 7

= = ot ca i

Syntax Highlighting To make the different source elements easier to read,
Syntax Highlighting can be applied to the text. These
are the colours which will be used by each TokenType:

Unresolved *
Stringliteral "Value"
NumericLiteral elie_2
BooleanLiteral True
Keyword Function
DataType Number
Identifier Main
DSOperator &
GrammarChar (
LineEnd *
StatementEnd EndFunction
The All-In-One Run (F5) Button This button automates the process of Parsing, Lexing,

and Executing the final Instruction Tree. The user need
only click a singular item to invoke all three of these
separate pieces of logic. It therefore makes the
program easier to use.

The Windows CLI (DSCLL.EXE)

This is the simplest of all the implementations. The premise of this implementation
is to enable DocScript programs to be easily run in an entirely automated fashion.
This interpreter could be task scheduled from within Windows, for example, to run a

DocScript program at a certain time each day.
The Criteria and Requirements for the Command-Line Interpreter were:

e [Windows CLI] Takes a Command-Line argument for the script to run
e [Windows CLI] Returns the Exit Code of the Script just run

I have hence decided that these are to be the Command-Line options for the DSCLI.LEXE Program:

Description:

DocScript Command-Line Interpreter. Interprets DocScript Source Files.

Examples:

DSCLI.EXE /RunSourceString:"Function <Void> Main ();Output(Hello, World!");EndFunction"

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

DSCLI.EXE /RunSourceFile:"X:\Programming\DocScript\HelloWorld.DS"

Argument Usage:

/RunSourceFile:<Value> Interprets the specified DocScript Source File
/RunSourceString:<Value> Interprets the specified DocScript Source String.
Use ; for NewLine and °~ for StringlLiteralStartEndChar.
/ShowlLog Writes Events from the DocScript Log to the Console Output
Stream during Interpretation
/ProcessDebugEvents Processes and shows Debugging Messages in the Log

(if the Log is shown)

Explanation & Justification: For running impromptu scripts, remote execution (one of the
stakeholder use cases), and experimentation scenarios, it is convenient to be able to execute some
source directly, without having to save it to a file. \Windows\System32\CScript.exe, for example,
does not support this immediate style of execution —the Script must be saved to a file and run in the
fashion cscript.exe Script.VBS.\Windows\System32\MSHTA.EXE however, can execute text-
only scripts in the fashion mshta.exe VBScript:MsgBox("Hello"). Therefore, DocScript will
implement this useful feature too.

The Web Console (DocScript Interactive)

This is the most multifaceted of all the implementations. With DS
Interactive, | have the opportunity to create a distributed, collaborative,
real-time, multi-client execution environment, and to do something quite
original with it. The goal is to be able to host an Execution Session on the
Server, and to have multiple clients tune in to the Session. Each client will
be able to see Program Output and LogEvents, and can also respond to
Input requests (generated by calls to Input () in the DocScript source).

The Criteria and Requirements for the Web Client Implementation were:

e [Web Client] Runs on a variety of different browsers on different devices
e [Web Client] Allows the user to enter source code into a text field and thereafter execute it

| have therefore designed this API:

(See next page...)

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

DSlInteractive API Sequence Diagram

WebPage Console DSInteractive API ‘

D5SExecutionSession Worker
Process

Upload (Source, ProgramiameSeed) |

[Save Source in DB]

A J

==return=:=

PrepareSession (ProgramMame)
-

==return==

ESID

GetSessionState (ESID)
-

>

|
|
|
|
|
|
[Create entry in ExecutionSessions Table]
: >
|
|
|

(Ready|Running|Finished)

(Ready|Running|Finished)

T
|
|
InitiateSession (ESID) |

|
|
|
|
|
|
|
|
T
|
I
e
|
|
|
|
|
|
|
|

[Initiate Session Msg]
»

==returnz==

ListenForESEvents (ESID, LMC, OMC, IEC, LastkKnownCEP)
-

La
[Update State and TimeStarted]
fo

y

==returns =

[Log Inputs, Outputs, and LogMsgs]

[Get ESState, OMs, LMs, IEs, and CEPs]
[

R —

|

|

|

ProvideInputResponse (ESID, IEID, InputResponse) :
»

>

(ESState, OMs, LMs=, IEs, and CEPs)

A

|
IsstillRunning, MissingOutputMsgs, MissingLogMsgs, MissingInputEvents, InputlsRequired, InputPrompt, InputEventID, MissingCEPs

|
[Check R%spcnded’l’u and update fields if needed]
-

==return==

ResponseWasAccepted

ListenFerInputinterupts (ESID, InputlD)
»

e

[Mark ES as complete with Reason]

 §

==returnz>

Pt

[Tell me when the RespondadTo changes...]
>

InputHasBeenRespondedTo

SubmitCEP (ESID)
-

>

>

[The RespondedTo has Changed]

[Write CEP to ES's CEP Table]
[

==return=:=

L

X

Save in [Uploaded

Programs] Table

Create Outputs,
Inputs, and LogMsgs
Table

Updates State and
TimeStarted in the
ES's Record in the
ESs Table

Writes the Input
Events, Output Msgs,
and Log Msgs to the
relevant Tables for
the Execution Session

Ensures there isn't
already a response
provided, and if not,
updates the
InputResponse and
RespondedTa and
RespondedToTime

If no Exceptions were
Thrown, reason is
"Finished” otherwise,
the contents of the
Exception,

A ListenForESEvents
call must pick up on
the cornpleted
session, and inform
the user.

‘Writes the CEP to the
Execution Session's
CEP Table, also
logging the
TimeSubmitted

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

DSI DataBase

Tables

The comments in the above sequence diagram make reference to some DataBase Tables, which

looks like this:

1:32:49 12-08-2022

1:32:49 12-08-2022

1:32:49 12-08-2022

1:32:49 12-08-2022

HELLO_AH42
HELLO_AH43
HELLO_AH44
HELLO_AHA45

HELLO_AH46

Helloworld.DS

HelloWorld.DS

Helloworld.DS

HellowWorld.DS

HelloWorld.DS

J/ UploadedPrograms Table |,

1:32:49 12-08-2022

Function <Void> Main () .. HelloWorld
Function <Void> Main () .. InputName
Function <Void> Main () .. AgeTest
Function <Void> Main () .. Programil
Function <Void> Main () .. PROGRAM3

J ExecutionSessions Table {,

1:32:49 12-08-2022

1:32:49 12-08-2022

1:32:49 12-08-2022

1:32:49 12-08-2022

Entity Relationship Diagram
This is the relationship between the UploadedPrograms and ExecutionSessions Tables; the
Primary Key ProgramName becomes a Foreign Key in the ExecutionSessions Table. This is a one-to-

Ready

Running
1:32:49 12-08-2022 Finished Finished Successfully
1:32:49 12-08-2022 Finished Input Timed Out for “...”
1:32:49 12-08-2022 Finished Finished Successfully

many relationship; one ProgramName becomes many fields in UploadedPrograms:

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

Object Explorer > 0 x /MHLIOI\SQLEXPRE_t{) - Diagram_0* |~ MMNLTO1\SQLEXPRE
Connect - ﬂ

= [MNLTO1\SQLEXPRESS (SQL Server 10.0.2
= [Databases
[System Databases
= [__i DocSeript_Testd
[Database Diagrams

= [Tables
[System Tables
E dbe.UploadedPrograms UploadedPrograms *
= dbo.ExecutionSessions ¥ ProgramMame

3 Views TimeUploaded

[Synonyms Source

[Programmability

[C3 Service Broker

[Storage
[Security
| J TestingDB

Securi - -
g Servertébject; ExecutionSessions *
[Replication % ESID
3 Management ProgramMame
TimeStarted
TimeEnded
State
ExitReason

There is one instance of each of the following Tables per ExecutionSession...

J ExecutionSession Outputs Table |,

m TimeSubmitted OutputMessage

1 1:32:49 12-08-2022 "Enter Name"
2 1:32:49 12-08-2022 "Enter Age"
3 1:32:49 12-08-2022 "Enter A"
4 1:32:49 12-08-2022 "Enter B"
5 1:32:49 12-08-2022 "Enter C"

J ExecutionSession Inputs Table J,

m TimeSubmitted | InputPrompt | InputResponse | RespondedTo | RespondedToTime

1:32:49 12-08- "Enter Name" ' True 1:32:49 12-08-2022
2022

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

1:32:49 12-08- "Enter False 1:32:49 12-08-2022

2022 Age"

3 1:32:49 12-08- "Enter A" False 1:32:49 12-08-2022
2022

4 1:32:49 12-08- "Enter B" False 1:32:49 12-08-2022
2022

5 1:32:49 12-08- "Enter C" False 1:32:49 12-08-2022
2022

J, ExecutionSession LogMsgs Table

1:32:49 12-08-2022 "Enter Name" Error Execution
2 1:32:49 12-08-2022 "Enter Age" Warning Lexing
3 1:32:49 12-08-2022 "Enter A" Information Parsing
4 1:32:49 12-08-2022 "Enter B" Verbose Unspecified
5 1:32:49 12-08-2022 "Enter C" Debug System

J' ExecutionSession Client Execution Packages (CEPs) Table |,

m TimeSubmitted JavaScriptToRun

1 1:32:49 12-08-2022 function () { ... }
2 1:32:49 12-08-2022 function () { ... }
3 1:32:49 12-08-2022 function () { ... }
4 1:32:49 12-08-2022 function () { ... }
5 1:32:49 12-08-2022 function () { ... }

NOTE: IDs start at 1 (not 0). This is so that 0 can be used to mean [none of the records].

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

The ExecutionSession Object
Those API EndPoints and DataBase Tables make an ExecutionSession look broadly like this:

ExecutionSession

*+ TimeStarted As DateTime
* ProgramName As String
« 1ID As String

CEPs
Inputs Output Log
Table Messages Messages

Explanation: By having a robust and comprehensive API like this, implementing the Client Pages (the
ones with HTML that the browser actually loads) becomes almost trivial; the client need only make
the correct APl request. Many of the APl EndPoints are for AJAX LongPolling, meaning that once a
request is made (E.g.
/API/Interactive/?Action=AwaitExecutionSessionInitiation&ESID=HELLO_AH42),
the server only returns a response when it is worth doing so (E.g. as soon as the ExecutionSession
with ID “HELLO_AH42” has its State change to “Running”).

Justification: Without these long-polling EndPoints, the client would have to make a high volume of
requests, which would indubitably impact server performance. Pertaining to the aforementioned
example, the client would have to make an
/API/Interactive?Action=GetSessionState&ESID=HELLO_AH42 request every second or
so, instead of just the one long-polling request.

Front-end Pages
| have mocked-up the following for the user interfaces, in accordance with the stakeholder criteria of
needing a simple, functional, and familiar style.

Interactive/ESParticipant Interactive/ESManager
Outputs Execution Sessions
[12:14:00] Hello, World! HELLO_AHA42 — HelloWorld.D5S: Ready
[12:14:01] Hello, World! HELLO AH42 — HelloWorld.DS: Ready
[12:14:02] Hello, World! HELLO AH42 — HelloWorld.DS: Running (started 08:15)

HELLO_AHA2 — HelloWorld.DS: Ended

Inputs

[14:15:00] (Enter your name) “Ben Mullan”

” " Can Prepare an ES from an UploadedProgram,
[14:15:00] (Enter your name} Ben Mullan Or immediately Prepare&initiate an ES from an UploadedProgram
[14:15:00] (Enter your name) “Ben Mullan”

[+Add]

Log Events:
0 executed

CEPs: 0 executed | | CEPs: 0 executed

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

1

(Popup on Blurred Background)

Input Request

Input has been requested since
[08:20:00] IEID = 1

Enter your Name:

V)

”~

Awaiting Input Interrupt Response.

[InputIsRequired] comes back
as True; the Client sends a

ListenForInputInterupts
request..

2

(Popup on Blurred Background)

Input Request

Input has been requested since
[08:20:00]

Enter your Name:

| Ben |

\\

Awaiting Input Interrupt Response..

Client enters InputResponse
and clicks Submit

3

(Popup on Blurred Background)

Input Request

Input has been requested since
[08:20:00]

Enter your Name:

| Ben |

n

Awaiting Input Interrupt Response..

Client must await
Inputinterrupt Response.

[Above] The DSInteractive Input-requesting procedure

Server-side Validation

Popup
dismissed
upon

Inputinterrupt.
response...

Each EndPoint on the API takes in a number of different QueryString Parameters. For example: The

EndPoint...

| /API/Interactive/ExecutionSession.ASPX?Action=GetSessionState&ESID=HELLO AH42]|

...takes in the QueryStrings Action and ESID.

For each QueryString passed to an APl EndPoint, | will need to validate that it is in an expected

syntactical format. | will do this primarily via Regular Expressions. For instance, the ESID will be
validated against the RegExp *\w{10}$.

One of the most important initial stages of the validation will be to ensure that each QueryString

specified in the URL is properly-formed, with a corresponding value. In other words, each

QueryString must be in the format ?{Key}={Value}, with & used to join one QueryString
KeyValuePair to the next. This means that the QueryStrings must match this Regular Expression:

A\?([A-Za—20-9]+=\w+&)*$

In this way, it is guaranteed that none of the QueryStrings will be specified without a value, and that

none of them are malformed. For instance, these QueryStrings would not pass the RegExp

validation:

e Name=

e Name

o Age=&

o Age&k
Stakeholder Input

To ascertain whether or not these design decisions | have made about the Formal Language

Specification, DocScript Architecture, and DocScript Implementations are suitable for the

stakeholders, and to ensure that this is broadly what they may have had in mind, | showed this

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

Design document and several drawings to the stakeholders, and asked for their comments — which |
have summarised as follows:

e The Formal Lang. Spec. describes exactly the sort of thing the Stakeholders were looking for;
simple, consistent, easy to get to grips with (only the 6 keywords etc...)

e The Architecture in its extensible nature is promising and provides possibility for potential future
expansion of the system

e The /RunSourceString:<Value> system on the DSCLI will be very useful to some of the
Stakeholders (Clara and Joe)

e The multi-client features of DocScript Interactive look very exciting and could be a very powerful
educational tool

(The consensus is that I'm ratified to continue the development of the system...)

Testing
This section describes the fashion by which the entire DocScript Solution will be tested. It will be
applicable both during the development, and thereafter, during the evaluation.

Inputs & Outputs
The main areas where Input is received, are:

e DocScript Source

o (..Including sometimes standalone Expressions)
e API URL Calls

e Command-Line Arguments

The main areas where Output is displayed, are:

e Output() Messages from DocScript Programs (MsgBoxes in DocScript'®t, Console text in DSCLI)
e APl Responses
e |logEvents

Testing Techniques

Unit Testing

| shall use Unit Tests in order to create automated tests for all areas of the project. This means that
if | cause an unintended side effect by changing one function, and this impairs the operation of
another function, then this will clearly show up in the Unit Test results. Visual Studio can
automatically bulk-run Unit Tests for me, which saves time.

Destructive Testing

In addition to these routinely-run Unit Tests however, | shall also manually test the application
destructively after | add each feature. This means deliberately attempting to break the system by
entering malformed or potentially dangerous input, to see how this is handled. Suitable error
messages need to be given, instead of the application crashing or becoming unresponsive.

Stakeholder Testing
Because | — the programmer —am aware of how the application works, what sort of input data are
expected, and — which pieces of validation | know | have implemented, | might not always be the

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

best person to actually test the software. The Stakeholder on the other hand, will end up using the
final product, and they might expect it to work differently that the image | have in my head of it
being used. They might, in other words, do unexpected and unforeseen things, which could have
unanticipated consequences. Therefore, | shall — after every major incremental release of the
compiled DocScript binaries — get the Stakeholders to test the application for themselves.

In order for me to know precisely what they did to cause a certain problem, |
shall get the stakeholders to run the software on their own computers, and
record their every click and keystroke with the built-in Windows Utility,
Problem Steps Recorder — psr.exe. This tool automatically generates a full Y
HTML report with screenshots, highlighted mouse clicks, and keystrokes, -]
which | can easily replay to work out wherein the problem lies, with great '

acuity. It was, incidentally, one of the new Enterprise Toolkit Features to be psr-exe

shipped with Windows 7.

Test Data
These are the data | shall use for each of the four Input areas mentioned earlier...

DocScript Source
(One per Block)

VALID: Simplest-possible DocScript Program
Function <Void> Main ()

Return
EndFunction

VALID: CLA Test

Function <Number> Main (<String@> _CLAs)
Output("First CLA: " & StringArray_ At(_CLAs, 0))
Return ©

EndFunction

INVALID: Malformed Function

Function <Void> Main ()
Return

EndFunction

EndFunction

INVALID: 2™ Line not syntactically-valid
Function <Void> Main ()

{Output(2)}
EndFunction

Standalone Expressions
(One per Line)

VALID
12

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

file:///C:/Windows/System32/psr.exe

12_10
12.0

12.0009

12 4 * ~9

"Hello, World!"

"Hello, World!" & " More Text"
GetName(17) & GetAge("Ben")

Ident

F(A+B * [C - D]) & [E | =-F ' G]

INVALID
122

"H

~4 + O~

F(A+B * (C-D)) & [E | -F ' G]
GetName[17]

API URL Calls
(One per Line)

VALID
/API/Interactive/?Action=GetSessionState&ESID=HELLO_AH43
/API/Interactive/Upload.ASPX?Item=Source&ProgramNameSeed=Hello%20World

INVALID
/API/Interactive/?ESID=HELLO_AH43
/API/Interactive/Upload.ASPX?Item=Source&ProgramNameSeed

Command-Line Arguments
(One per Line)

VALID

/RunFile:"X:\Programming\DocScript\HelloWorld.DS"

/RunFile:HelloWorld.DS /ShowLog /ProcessDebugEvents
/RunSourceString:"Function <Void> Main ();Output(Hello, World!");EndFunction”
INVALID

/RunFile:"X:\Programming\DocScript\HelloWorld.DS /ShowlLog

/RunFile:

/RunSourceString:"Function <Void> Main () Output("Hello, World!") EndFunction"

Explanations & Justifications

The wide range of testing data specified here will enable me to effectively invoke all possible corners
(so to speak) of the input-processing algorithms. This will thereby ensure that each component of
logic within the Library DLL and Implementation EXE is functional and works as is intended.

| do not need to exhaustively test every possible value of input, but rather, every possible format.
For example, the same parts of the Command-Line Argument processing algorithm are invoked for
the input values /RunFile: "HW.DS" and /RunFile: "WH.DS"; the second test adds no value and
is futile. However, the different syntaxes /RunFile:"HW.DS" and /RunFile:HW.DS ought to
both be tested, because they are parsed slightly differently and therefore different side effects could

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

of the algorithms, without repeating any logically-identical values.

Testing Checklist (Interpreter DLL)

befall in subsequent stages of the program. My chosen Testing Data are designed to test every part

After the majority of the development and implementation is complete, myself and the Stakeholders

shall perform each of the following tests, to ensure that the requirements have been met:

Assert-style Test

An error is thrown if two variables are declared within the same (or relative downstream)
scope, when both variables have the same identifier, or the identifiers differ only by case;
the language is not case-sensitive

Variables can be declared in each of the 6 valid DataTypes (The 3 DataTypes, and their
Array variants)

A high degree of verbosity is present in the error message resultant of an attempt to
lexically analyse the expression (e.g.)5 + + 4

A Function can be declared with lInstruction-based contents statements inside, such as an
IfStatement I+ (Expr) {LineEnd} .. EndIf

A Global variable can be declared outside of any Functions (E.g. <String> NameGlobal
= "Ben Mullan; S7; Y13; U6;")

An error is thrown if a Program is written without an EntryPoint Function Main

A DocScript Program can be written to output "B" if Command-Line Argument [0] is "1", and
"C"if itis "2" (Just an example, to prove that CLAs can affect programme output)

A DocScript program can be written to Output () "Hello, World!"
A DocScript program can be written to take Input () from the user
A Comment can be specified with # Comment {LineEnd}

The Expr [5 + 3] * 9resolves to 72 whereas5 + [3 * 9] resolves to 32 (proof that
brackets work)

The numeric literals 10, 10.0, and 10_10 are all magnitudionally equivalent

All of the Test Data {Above} run successfully in the DocScript System & Implementations

Explanation: Each of these is an assert-style test; one attempts to disprove the statement, and on

failing to do so, declares that the system/component has passed the test.

Justification: (The justifications for these are essentially the entirety of the preceding document...)

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

Post-Development

After the MVP (Minimum Viable Product) described herein has been developed to at least RCO (the
first Release Candidate), the subsequent stages of development are likely to become increasingly
indistinct; because the product works to some extent, but is constantly being refined and improved,
it is difficult to know when to call it "done”...

Post-Development Testing
...To aid, therefore, in this process of long-term maintenance and improvement for the product, |
shall declare here some testing data to be used during the post-release development.

Explanation & Justification: These are some of the principle reasons for why it is important that |
perform the post-development testing and maintenance:

e Speed: The DocScript system implementations could accumulate encumbering quantities of data
over time, which could slow the software down.

e Certainty: After each new incremental release of the software, | shall continue to run the Unit
Tests on all releases, to make sure that the individual features work as is intended.

e Protecting Reputation: If the quality of user experience were to deteriorate over time, this could
be deleterious for the DocScript software (and brand)'s reputation. Ongoing maintenance is
needed to establish and maintain this reputation, particularly for the Web Implementation
(DSInteractive) because web technologies and standards change very quickly, and insultingly-
modern users will begin to look askance on older (but perfectly functional) methods such as raw
AJAX, or jQuery.

Data to be Used Herefor
Although the system should always remain compatible with all the data stated hereinbefore, there
are a number of additional data, relevant exclusively to the post-development phase:

e DocScript Programs written by the Stakeholders during their initial usage of the system

e Input commands being sent from different operating system clients to the Command-Line
Interpreter running on a Remote Network Server (I only use Windows 7/Server 2008 R2, but the
Stakeholders may use some other operating systems — e.g. which interact differently with PsExec
or Telnet, for remote CLI usage)

e Input data which previously caused an error to occur

e Data which are the result of a change to the environment under which the DocScript software
operates

o Obsolete and older Unit Tests from early project development —to be run every once in a while,
but not on every release compilation because this would be too slow

Explanation: If someone were to develop the DocScript further, they would have scope to do this
because of the extensible way in which DocScript and its components have been designed and built.
The above data sources would be used to develop, test, and extend DocScript. Furtherance of the
system is permitted.

Justification: If the DocScript system were to become legacy code (which in due time is an
inexorableness), then post-development reimplementation and refactoring would occur to
reimplement the “old” source code into new binaries, perhaps written in a different programming

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

language. The mentioned testing data sources are suitable for this as they are applicable and
pertinent not only to present data collection methods, but to potential future methods too.

This diagram {, shows the binaries of the DocScript Solution (.s/n). The majority of testing must
occur on the red nodes, because the other binaries are dependent on the base DLLs. All the *.exe
binaries take Command-Line Arguments which will be tested with the specified data, and the DS
Library DLL is tested with all the DocScript source tests and sample Expressions. The Web Parts
(Interactive) are also to be tested with the aforementioned URLs.

i

e

- _ » 4 - _ A > -
\éﬂ DSWindowsIDE léﬂ DSIExecutionSessionWarker J DSCommandLinelnterpreter j DSWebParts \éa DSLibrary J DSExprResolutionUtility

[Blue = Implementation Binary] [Grey = Utility Binary] [Red = Library DLL]

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

Development and Testing

Overview

The Design stage has left me with a clearly-defined, vigorously-evaluated, and extensibly-structured
specification for the DocScript Programming Language. To effectuate and corporealize this plan —
however — | shall work through the following stages...

1) Develop the Core Interpretation Engine DLL
a. Write the Parser (Source - Tokens)
b. Write the Lexing logic (Tokens > Program)
c. Write the Execution Logic (Program - {Output})
2) Develop the Command-Line Interpreter (DSCLI) Implementation
3) Develop the Windows IDE (DSIDE) Implementation
4) Develop the Web-based (DSInteractive) Implementation
5) Test the entire system with different Programs and Scenarios

Programming Conventions Used Herein
Allow me to briefly elucidate how the 75,894 lines of code | am about to write are structured...

Naming Conventions
| shall continue to use the beautiful and unswerving CamelCase style, for all identifiers. Note that
this is different from drinkingCamelCase in the following way:

CamelCase drinkingCamelCase

In addition, | employ the following conventions for identifiers within the solution:

#* * ig an Identifier for a Local Item
® * 15 an Identifier for a Private or Protected Item
*# ic an identifier for a Friend Item

- * is an Identifier for a Static Item (Mot SHARED, |
T* # ig a Generic Type Specifier
I* * is an Interface

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

Here are some examples:
Mamespace WebParts Dim ESID$ Public Function MustBe(0f _TSoughtType As {New})

Explanations and Justifications

| maintain vehemently that this is not pedantry. By employing these conventions, | can determine —
just at a glance — precisely where | am able to use a given variable, and what a given identifier is for
(Object, Type, Namespace, Class/Structure, Interface, or Type-Parameter). This provides a veritable
improvement to the speed of development, and the clarity and lucidity of the code written.

Incidentally, single-letter identifiers (e.g.) are NEVER admissible in my ruling; this is constitutes

wanton laziness.

Modularity and Encapsulation
The solution is modular in the following ways:

e The Library is written as a separate DLL to the other assemblies/binaries which implement it

e Each assembly is split into a number of different Namespacels
e Fach may contain several [Classles, [Structurels,
Delegate|s, and [Enumls

e The [Classles and [Modulels contain both Privatel/Protected| and [Public| members

Interfacels,

Modulels,

Explanations and Justifications

This tree-like, hierarchical structure for the solution, means that it is easy to find any given item, by
logically following the path one would expect to lead to it. It also leads to a good level of
discoverability of items; if one were looking to examine the structure of the DocScript Runtime
system, one would look in Namespace Global.DocScript.Runtime|— that much would be
axiomatic | concede, but the modularity is certainly conducive to an ease-of-navigation.

Comments and Annotations

The Visual B.A.S.I.C. .NET Programming Language supports — | contend — four types of comments.
Readers will be glad to hear that | possess a rigorous and pedantic system for the use of all 4 types,
for different purposes...

1. Ticks:

| use these for informal, quick notes.

2. REMs:
| use these for formal, properly-worded descriptions, including multi-line planning and
breakdown for how a complex Sub of Function should work.

3. If-False Blocks: HIf False Then {LineBreak} Comment {LineBreak} #End If|
This is admittedly a sort of hack, but is useful sometimes when | want to type lengthy
comments with many interstitial line-breaks.

4. XML Documentation: |''' <summary>Comment</summary>|
This is the most powerful form of comment, providing Intellisense text for the components |

create. For example:

ript.Runtime.con

“1¢ Constants “ | Class Constants

“t% ExecutionContext - | An Uninheritable, Uninstanciatable Class holding Runtime (Execution] Constants for DocScript

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

Explanations and Justifications

It is vital to stress the following points regarding the use of comments:

e Comments should not be written to explain what is being done. This much should be obvious
from the code and identifiers; variable names should be chosen to make the source read like a
comment. E.g. It would be mindless and inane to write |'Beeps if the input is nothing]

above the line [If _Input Is Nothing Then Beep()] that code is already a very nice English
sentence, and this linguistic register of programming is afforded to me only in Visual Basic .NET. |
know of no other language which provides the same clarity.

e Comments should be written, only to explain why or how a process occurs. For example, | find

this sort of thing useful, at the top of a sizable Function:

32
33
34
33
36
37
38
39
4a
42
43

REM | 1
REM | DocScript Expr. Tree Construction Process |

e L]
REM

REM 1) Initial Validation
! - Ensure _RawTokens is not Empty
- Reassign _RawTokens to not end in a [LineEnd] Token if it currently does
- Ensure _RawTokens all have a permitted TokenType
- Ensure each opening bracket "(" or "[" has a corrosponding closing bracket...
. (even though we know the brackets for the source *as a whole* are balenced)

REM 2) LBL Production

- Produce the Top-Level LBL (Linear Bracketed Level)

- Simplify this LBL into an unambigous form. E.g. [[9]] = 9

- Validate this simplified LBL to ensure that the expression is well-formed

REM 3) IOT Collapsing
! - Identify the Indexes and Prescedances, of Operators in LBL
- Order this OperatorsList by the Presecedance and Associativity of the operators
- Starting with the highest-prescedance Operator, collapse the LBL into IOTs (Intermediate Operator Trees)
- Assemble these IOTs into the RootTreeNode, wia the SCIs (Scanned Component Indicators) of each LooseOperatorExpr

REM [_RawTokens] =+ [_ToplLevellBL] - [_SimplifiedlLBL] -» [_ExprTreeRoot]

These commentary principles will be observable in the forthcoming screenshots of the DocScript

Implementation.

Writeup Segments
The subsequent documentation of §Development makes interspersial use of these boxes, for

particularly important considerations:

Progress Recap: Where am | in the development plan? [Review]

Prototype: This point marks a milestone in the product, which is now capable of...

Structure and Modulatory: This DSI Database is well-structured, because...

Validation: The following ensure that data of the correct variety is present in the ...

Testing Table: Does this component function in accordance with the stipulated criteria?

{Yellow Progress Check Boxes, shoring the current line count for the whole solution}

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

[Stage 1]
Core Interpretation Engine (DLL) Development

(As a reminder, this DLL is the implementee; it contains all the logic needed for parsing, lexing, and

executing a DocScript Program, but not, for instance, implementation-specific user-interface
components.)

Structure and Modulatory: This DLL (DocScript Library) is well-structured, because...

e [timplements the principle of pipelining; the output of one operation is the input to the next one.
In the case of DocScript, the pipeline looks like [Source - Tokens - Program —> {Execution}]. As |

mentioned back in §Design, that looks like this to an implementer of the DLL:

Raw

Dim _Source As [String] = "..."

'Parse

Dim _Tokens As DocScript.Runtime.Token() = _
DocScript.Runtime.Parser.GetTokensFromSource(_Source)

'Lex

Dim _Program As New DocScript.Runtime.Program(_Tokens)

'Execute
_Program.Run({})

Normally, pipelining is performed with the pipe operator m For instance, the Windows® shell

command [ipconfig | find "Address" | clip|gets the output from systeminfo.exe, pipes it

into find.exe, and thereafter pipes the output from find, into clip.exe. It is a chain of small
programs working together.

e There is a clear tree-like, hierarchical structure, whereby the Solution contains multiple projects,

each of which have several namespaces, which themselves each contain numerous classes
holding a litany of Functions and Statements.

Parser

This sub-section of the DLL lives in the Namespace, and has the main role of taking in a raw

Source-Code String, to validate, analyse, and derive a series of [Token|s from.

The Token Class
It befits me to begin by writing up the class, as it was defined in §Design:

' <summary>Represents a Segmented String with a TokenType, from the Source of a DocScript Program</summary:
Public Class Token

[Represents the Catagorical Vareity of a Token|

Public Enum TokenType As UIntlé ..J

Pep’esen:s the original location of a Token in the Source]
[Public Structure TokenLocation ...|

Public ReadOnly Value As String
Public ReadOnly Type As TokenType
Public ReadOnly LocationInSource As Tokenlocation

|Pub;ic Sub Mew(Byval Value$, ByVal Type As TokenType, ByVal Locationline As UIntle, ByVal LecationColumn As UIntl6) ...
Pe:u’ns a KVPSerialised String to represent the Data of the current Object
|Public Overrides Function ToString() As String ...|

End Class

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

This is the resultant automatically-generated Class Diagram:

-

Token B3
Class

= Fields
LocationInSource As TokenLocation
¥ Type As TokenType
Value As String
= Methods
% MNew(_Value As String, _Type As TokenType, _LocationLine As UShort, _LocationColumn As UShort)
W ToString() As String
= Mested Types

TokenLocation [
Structure
TokenType [¥
Enum

hS A

Despite being a simple, encapsulate, dictionary-style [Class], several stylistically-salient components
are worth herefrom pointing-out:

| have written a custom Key-Value-Pair Serialisation method, to automate what | anticipate will
become rather a commonplace method amongst Classes and Structures in the Solution. Here's

how it's implemented in the Class:

<summary>Returns a KvPSerialised String to represent the Data of the current Object</summary:>
Public Overrides Functicn ToString() As String
Return DocScript.Utilities.KVPSerialisation.GetKVPString(
{"value", Me.Value}, {"Type", Me.Type.ToString(}}, {"LocationInSocurce", Me.locationInSource.ToString()}
)
"Results in e.g. : [Value="Function™, Type="Keyword", LocationInSource="[Line="18", Column="3"]"]
End Functicn

e Type declarations directly relevant to the Class are defined as Nested Types within the

Class itself. In this instance, the Nested Types are [Structure TokenLocation|and [Enun|
|TokenType As UInt16|:

<summary>Represents the original location of a Token in the Source</summary:

<summary:Represents the Catag
Public Structure TckenLccaticnl

Public Enum TokenType As UIntle

Unresolved = 8 Public ReadOnly Line As UIntl6, Column As UIntle
stringliteral = 1
Numericliteral = 2 Public Sub New(ByVal _Line As UIntl6, ByVal _Column As UIntls)
BooleanlLiteral = 3 Me.Line = _Line : Me.Column = _Column
Keyword = 4 End Sub
DataType = 5 — - - -
. ps [Returns a KvPSerialised String to represent the Data of the current Object]
Identifier = 6 Public Overrides Function ToString() As Strd I
DSOperath =7 u 1C Uverrlildes unction o ringil) As ring ...
Gramar'Char =8 [Returns a Shortened String, in the Form (E.g.) [14,7]
LineEnd = 9 [Public Function ToShortString() As String ...|
StatmentEnd = 18
End Enum | End Structure

The Class Members are immutable; once they have been assigned a value by the constructor,
their value cannot be thereafter altered. This is implemented by means of language-level
immutability through the keyword:

42 | Public ReadOnly Value As String

43 | Public ReadOnly Type As TokenType

44 | Public ReadOnly LocationInSource As TokenlLocation

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

This is good practice because it prevents unforeseen post-construction tampering: A is
only supposed to represent three data about an occurrence of a character-sequence within
DocScript source — since the character-sequence it represents will never change, it does not
make sense for the members of this corresponding class to change either (wherefore they have

been declared as ReadOnly)).

The Parser Module
There is no need to make the Parser object-orientated (i.e having to do
PParser()).Parse(_Source)|instead of just [Parser.Parse(_Source)|), which is why | am

implementing it simply as a Module:
1 —l‘lamespace Runtime

2

3 E """ <summary:>Contains Constants and Methods for the first stage in the DocScript Interpretation Process</summary:
4 [Public Module Parser

Constants
It contains a number of constants needed for the Parsing process...

6 El#Region "Parser Constants”

7

H Private Const WordChar_RegExp_§ = "*[8-9a-zA-Z_\5@\.]5" 'S Needed for SLITs e.g. $SLIT 65; @ Needed for Array Types e.g. <String@>; . Needed for some Numeric Literals e.g. 1255.2292
9 Private Const SLIT_PlaceholderPattern $ = "$SLIT_{Number}$" ‘{Number} is later String.Replace()'d

10 Private Const SLIT RegExp_$ = "\$SLIT_\d{1,5}\3"

1 Private Const Stringliteral RegExp § = """[~""]="""

12 Private Const LineEnd TokenTypeValue_§ = [vbCrLf]

13

14 Private Const ValidIdentifierChars_$ = "ABCDEFGHIJKLMNOPQRSTUVKKYZabcdefghijklmnopgrstuwwxyz_"

15 Private Const ValidNumericChars $ = "0123456789." 'This isn't refering to Mumericliterals

16 Private Const ValidOperatorChars_§ N R

17 Private Const ValidGrammarChars_$ = "()[]<>,"

18 Private Const ValidSLITStageTokenChars_$ = (ValidIdentifierChars_ & ValidoperatorChars_ & ValidGrammarChars_ & ValidNumericChars_ & LineEnd_TokenTypevalue_$ & "$@")
9

20 REM A& Token should be Tolpper()ed before being checked against these

21 Private ReadCnly TokenRegExpToTokenType_Table_ As New Dictionary(Of String, Token.TokenType)() From {

22 Lo [A"T]E"")$", Token.TokenType.Stringliteral},

23 {"*((\d{1,183(\.\d{1,4})?) | [A-Za-28-9]{1,18} \d{1,3})$", Token.TokenType.NumericLiteral},

22 {"*((TRUE)| (FALSE))$", Token.TokenType.BooleanLiteral},

25 {"*((IF) | (ELSE) | (WHILE) | (LOOP) | (RETURN) | (FUNCTION))S$", Token.TokenType.Keyword},

26 {"~(END((IF) | (WHILE)|(LOOP)| (FUNCTION)))$", Token.TokenType.StatmentEnd},

27 {"*(((STRING) | (NUMBER) | (BOOLEAN))@? | (VOID))$", Token.TokenType.DataType},

28 {"*(_2[A-Z]+[A-Z_]*)$", Token.TokenType.Identifier},

29 L= &)= N NS IN* [/ %] ~)$", Teken.TokenType.DSOperator},

30 L OV INLINT [[>]\,)3", Token.TokenType.GrammarChar},

31 {"*(\r\n)§", Token.TokenType.LineEnd}

32 B

33

4B Public Function GetRegExp_For_TokenType(ByVal _TokenType As Token.TokenType) As [String]

35 Try : If Not TokenRegExpToTokenType_Table .ContainsValue(TokenType) Then Throw Hew DSValidationException("The TokenType did not exist in the TokenTypeToRegExp Table”, _TokenType.T
36 Return TokenRegExpToTokenType_Table_.Where(Function(_KVP As KeyValusPzir(Of String, Token.TokenTyps)) _KVP.Value = _TokenType).First().Key
37 Catch _Ex As Exception : Throw New DSException(“@@GetRegExp_For_TokenType: " & _Ex.Message, _Ex) : End Try

38 End Function

39

40 | #End Region

GetTokensFromSource()
...And the key method is:

42 [""" <summary:Performs the Segmentation and TokenTypeldentification to generate Tokens from some raw DocScript Source</summary>
43 [Public Function GetTokensFromSource(ByVal _RawSource$) As DocScript.Runtime.Token()

Owing to my detailed planning and foresight during §Design, | was able to simply follow my
Pseudocode-English plan for this method. It is implemented as follows:

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

public Function GetTokensFromSource(ByVal RawSource$) As Docscript.Runtine. Token()
Try

LogParsingessage("Began Parsing...", LogEvent.DSEventSeverity. Infomstion)

ReM

_RewSource. Split({vbCrLf}, StringSplitopti
“'8 _RawSourcelines. Length.Tostring() & * Line(s

-BlankOutUnnecessarySourceLines_(_RawSourcelines)

Dim _SLITHatches A
LogParsingHessage(
1f ST

.SLIT_RegExp_)).Matches(String. Join(vbCrif, _Cleansourcelines))
Thatche:

der sppeared in the Source before any had been inserted by the Porser. This is not permitted.”, _SLITHatches.Item().Value)

e TokenPositions. Without this, it would do all horozontal positions relative to the length of a SLIT, instesd of the string

t(OF Token) o _
In _Segmentediokens Where ((_Token.Type = Token. oken'ype.Linetnd) Oklse (Not _Token.Value.WithLeadinghhitespaceReoved(). Istapty())) Select _Token).ToList()
8L t - _NoniullTokens.Count).ToString() & * Mull Token(z)")

rarray() .Contalns(_Char)) Then _
d at " & _Tokan. LocationInsource. Tostring(), _Token.value)

Ls_(_MonhullTokens, ExtractedStringliterals)

+ " _ClassifiedTokens”)

REM Ensure all Stavemento

B) are balenced and legally-crdered
LopLexingessage("
Docserd

Sediy(_Token) Grelss SuiltInTPVs. StatementClozing TPV, IsSatisfiedty(Token)) Select _Token.Valus. Tobpper()).Tairray(),
don),

alenced with the StatementClosings (EndFunc

Modularity and Structure Considerations
To segment this method and make it more manageable and easier to read, | have divided the meat
of the algorithm into these Private Function|s within the Parser Module:

AllLineBreaksAreValid ()
BlankOutUnnecessarySourcelLines_()
ReplaceStringlLiteralsWithSLITs_()
SegmentCleanSourcelIntoTokens ()
ReplaceSLITsWithStringLiterals ()
GetTypedTokensFromUnclassifiedOnes ()

Validation
Naturally —in keeping with the nature of a parser — about half of the logic of the parser is just
validation! Here are some of the checks performed:

e Are all Line-Breaks of the CrLf type?

o Do any SLIT-Placeholders appear in the source?

o Are there any Speech-marks remaining, after the SLIT-Stage Tokens are produced?
e Are there equal numbers of opening- and closing-brackets?

e Are there equal numbers of Statement-Openings and -Closings?

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

Line Count

5000

Progress Check | ..,

At this point in the development, 3000

| have written 4582 Lines of 2000

code...
1000

0
01/06/2022 01/07/2022

A considerable proportion of those lines are involved in validation, such as...

Validation: The following algorithm is what | came up with to ensure that there are an equal number
of opening and closing brackets, and that they're in the correct order...

e This is my implementation of the bracket-stack algorithm, which ensures that for each opening
bracket, there is a corresponding closing one.

972 E Public Function ContainsellgalencedPairs(Of _TItems)(Byval _Allltems As _Tltems(), Byval Paramarray _Pairs As Tuple(of _TItems, _TTtems)()) As Boolean

073

074

975 "beclare a TItems stack

976 ‘For Each ITtem In _JustTheRelevantItems

977 " If the Item is an Opening Component (_Pair.Iteml) then push it onto stack

978 ' If the Item is a Closing Component (_Pair.Item2) then pop from stack and if the popped Ttem is the matching Opening Component then fine, but otherwise the Items are not balanced
979 ‘After complete traversal, if there is an Opening Component left in stack then the source is not balanced

980

951 "Contains only Items which are also present in the _Pairs (£.g. only the Brackets [] {} <> out of all the Source Tokens)

982 Dim _JustTheRelevantItems As TItems() = (From _Item As Tltems In _AllTtems where (_Pairs.Any(Function(_Pair As Tuple(Of Titems, TItems)) (_Pair.Iteml.Equals(_Item)) OrElse (_Pair.Item2.Equals(_Ttem)))}
953 Dim _TtemsStack As New Stack(Of _TItems)()

084 Dim _NoOpeningComponents, _NoClosingComponents As UInt32

085

986 For Bach _Item As TItens In _JustTheRelevantItems

987

988 “was advised to do this by Vs 2010. Sure

089 Dim _LambdaCopy0f_Item As _Titems = Ttem

990

991 REM If we have an Opening Component, Push() it onto the Stack

992 If _Pairs.any(Function(_Pair As Tuple(of TItems, TItens)) _Pair.Iteml.Equals(_Lambdacopyof Item)) Then

993

994 _Ttemsstack.Push(_Ttem) : _NoGpeningComponents += 1UT

99

996 REM If we have a Closing Component, find out if TtemsStack.Pop() produces the corrosponding Opening Component

997 ElseIf _Pairs.Any(Function(Pair As Tuple(0f TItems, Tltems)) _Pair.Ttem2.Equals(_LambdaCopyOf Ttem)) Then

95

999 *Get the Pair which contains the corrosponding Opening Component for out Closing Component
1000 Dim _Pair_ihereforuetaveClosingComponent As Tuple(Of TItems, TItems) = _
1001 _Pairs.First(Function(_Pair As Tuple(0f TTtems, _TTtens)) _Pair.Item2.Equals(_LambdaCopyOf_Item))

002
1003 "How see if the Pop() produces the same Opening Component as we have in our Pair
1004 *(Additionally, if the Stack is empty, then the Items aren't well-balenced, because we just hit a Closing Component which didn't follow a previous corrosponding Opening Component)
1005 If (_ItemsStack.Count = @) OrElse (Not _ItemsStack.Pop().Equals(_Pair_whereforweHaveClosingComponent . Tteml)) Then Return False
1006 _MoClosingComponents += 1UT

007
1008 Else : Throw New DSVali ption("An Ttem was not recognised as either an Opening or Closing Component”, "The Item's ToString() is: " & Ttem.ToString())
1009 End If
1010
101 Next
1012
1013 REM Now determine if there is anything left on the Stack. The only things on there could ever be Opening Components, because that's all we ever Push()
1012 If Not (_ItemsStack.Count = B) Then Return False
101
101 REM If we're here, then all Opening and Closing Components must have been balenced, because we haven't yet Return'd
1017 LogParsingHessage (String.Format("Deternined that {6} relevant Item(s) out of {1} total Item(s) were well-balenced with {2} Opening Component(s) and {3} Closing Component(s) from {4} Pair(s)", _JustTheReley
1018 Return True
1010
1020 Catch Ex As Exception : Throw New DSException("@IsStackBalenced(0f " & GetType(TTtens).Name & "): " & Ex.Message, Ex) : End Try
1021 | end Function

e For example: would be valid, whereas would not be (even though there are the same
number of brackets and squares in the latter).

o This ensures than an expression which is malformed because of bracket misplacement or
mismatch, does not even make it past the parser. This means that by the time the lexer gets hold
of the tokens, it can be much more confident that the expression is well-formed.

Iterative Testing
It's time for the first test of the parser!

Creating the Scratch-Testing Project

| started a new Project in the DocScript Solution for experimentation and debugging purposes. Then |
created a simple Windows-Form to take in some source, and show the segmented Tokens resulting
from that source:

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

Source: Tokens:

HHelloWord.DS - Function
Function <Void: Main () « B
Qutput{"Hello, Ward!™) - .
Retum Void_
End-Function =
_Main
_
.)
_Output
_
9923 CSSLIT 0%
e
Return
End

9
Senalise |

Debugging

On clicking the [Parse] Button — however — | was surprised to see the
application freeze up and nothing happen for a few seconds, and then,
suddenly, the debugging session would Throw a

ISystem.OutOfMemoryException|and crash entirely. This (is must be said)

is certainly one of the most exciting exceptions to come across. | knew
that the likely causes were:

e A stack overflow caused by an infinite loop

To examine what was going on more closely, | reproduced the circumstances under which the
OutOfMemoryException| had been thrown. | saw this befall in Process Explorer's System-

Information Graph:

[=T |
=

o Microsoft Visual Studio]

A first chance exception of type 'System.OutOfMemornyException’ cccurred in -
mscorlib.dll

e

= "
—_—
Physical Memaory i
116 GB

Break ” Continue Ignore

8:02:55 (Afternoon)

TTE

EJ0 SN T S o o o e |
ki

N2

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

| used the Step-Through feature of VS to trace what the loop might be:

21 If (Global.DocScript.Logging.logUtilities.CurrentlogEventHandler = Nothing) _
22 Then Throw {Mew DSException(™A Message could not be logged because the [CurrentLogEventHandler]

...Which caused the constructor for to be called, which attempted to Log the Exception,
which couldn't occur because the [CurrentLogEventHandler] was Nothing so it constructs a

to explain this, which attempts to Log the Exception, which couldn't occur because the
ICurrentLogEventHandler| was Nothing, which then constructs a New DSException|, which

attempts to Log the Exception, which it can't because there's no |CurrentLogEventHandler)...

...And so on... ... Recursively... ...Forever....
(Or, indeed, until my 16GB of system memory had been expended.)

To fix this (admittedly rather-catastrophic) bug, | changed the toa
ISystem.NullReferenceException], which dosen't forward the Message onto DocScript Logging,

thereby breaking the chain!

28 | REM We can't throw a DSNullException if there isn't a CurrentLogEventHandler, because the instanciation of this
21 If (Global.DocScript.logging.loglUtilities.CurrentLogEventHandler = Nothing) _
22 Then Throw (New System.NullReferenceException(”A Message could not be logged because the [CurrentLogEwventHandl

| also added a comment in, to indicate this change 1.

However: There was one more amendment to make; the root cause of this problem had been the

uninitialized |CurrentLogEventHandler]. | had forgotten to type this line at the start of the

Experimentation Project's effective EntryPoint:

9 DocScript.Logging.LogUtilities.CurrentLogEventHandler = DocScript.lLogging.BuiltInLogEventHandlers.GUIDefault

With this addition, the Parser Testing continued, and worked rather well. | tested every possible
eventuality (using many of the data declared in §Design) and made sure to attempt to break the
system. This is an example of destructive testing. | used both source which would be valid, as well as
entirely-erroneous source, which certainly wouldn't be valid DocScript. Of course, the parser is
somewhat dumb, in that it is oblivious to the validity of anything beyond the structure of the
individual Tokens. It does not validate the order or frequency of the Tokens; that's for the next stage
— Lexing.

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

Prototype: This point marks a milestone in the product, which is now capable of...

e Taking in some raw Source, and thence deriving DocScript Tokens. This is how it appears in the

PocScript.Experimentation| project:

ol ParserExperiments =RNN X

~

I
53
Source: Tokens: Token Types:

DSE Form

Serialise

#HelloWorld.DS - _Function_ + | [Keyword] -

Function <Void:> Main () < [GrammarChar] Expression Experimer
Output("Helle, World!™) _Veid_ [DataType] .
Return > [GrammarChar] Parser Experiments —

EndFunction :M;i”_ [Identifier] :
e et |

m

-

o [GrammarChar] |
“ILlineEnd}_ [LineEnd] <] | *
Output [Identifier]
([GrammarChar]
"Hello, World!" [Stringliteral]
B [GrammarChar]
{LineEnd} [LineEnd]
—> | Return_ [Keyword]
{LineEnd} [LineEnd]
EndFunction [StatmentEnd]
{LlineEnd} [LineEnd]

Z|

o Performing preliminary syntactical validation on the source, including ensuring that the number
of opening- and closing-brackets is the same.
e Ensuring that there is a {LineEnd} appending the source, readying it for the imminent /exing stage.

My custom Exceptions are also making debugging significantly more targeted and direct. | can see,

for example, precisely which method this Exception is coming from, thanks to the integrated

StackTrace:

ow that the Segmentation has occoured, we have a series of Tokens with Unresclved T

ext, we must therefare Besnlwus the TokenTwune
Microsoft Visual Studio

~

Clag With
. Anunhandled exception of type 'DocScript.Exceptions.D5Exception’ occurred in- »
EPLA | 4B DocseriptLibrary.dil
rsin "
n _N Additional information: (Logbed] @GetTokensFrom5ource: (Logged) An Invalid
Character was found in the Source within a Token located at [Line="4",
© As Column="11"]. The Invalid Content was: [
! New 1.
Break ” Continue Ignore
1 at]
inly Property ALILineBreaksArevalid(Byval Rawsourced)] As Boolean .. .|

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

The Logging with the [GUIDefault As LogEventHandler] now works well too:

| will now test the Prototype Parser against criteria from the §Design, and some new criteria.

Does the parser operate reliably, speedily, and consistently?

Tokene: Token T . [
"r.. DocScript Log Window -
File Edit Tools [Sound ¥ Error ¥ \Waming W Infomation | Verbose | Debug
Ico| Time Severity Catagor| Message
23-1219:56.... | Infomation |Parsing | Began Parsing. ..
i 2312 19:56.... | Verbose Parsing |Checking LineEreaks validity: Detected 4 CamidgeRetum(s) and 4 LineFeed|s). Result: Valid
] 23-1219:56:. . | Verbose Parsing | Loaded in 5 Line(s)from Source
@ 23-12 15:56:. .. | Verbose Parsing | lgnored 1 Comment Line(s)
B || 23-1219:56:... |Verbose Parsing | lgnored 0 Empty or Whitespace-only Line(s)
_% 23-1219:56:. . | Verbose Parsing | Detected 0 prematurehy-present SLITIE) in Source
@ 2312 19:56.... | Verbose Parsing | Replaced 1 String Literal(s) with SLITs
B || 23-1219:56:.. |Verbose Parsing | Segmented Clean Source into 28 Token(s)
_l | 23-1219:56:... | Verbose Parsing | lgnored 11 MNull Takenis)
W | 23-1219:56.... |Verbose Parsing | Checking that all Characters in the SLIT-Stage Tokens are valid...
_% 23-12 19:56:... | Verbose Parsing | Began Resubstituting SLITs with Stringliterals...
@ 23121856, | Verbose Parsing |...Replaced 1 SLIT|s) with StringLiteralis)
W | 2312 19:56.... |Verbose Parsing | Began Classification stage of Parsing...
] B || 23-1219:56:.. |Verbose Parsing | Detemined that & relevant kemis) out of 17 total kem(s) were well-balenced with 3 Opening Companent(s) and 3 Cla...
@ 23-12 15:56:. .. | Verbose Lexing | Ensuring that all Statements Opened are Closed in the comect order
@ 2312 19:56.... | Verbose Parsing | Determined that 2 relevant kemis) out of 2 total kemis) wene well-balenced with 1 Opening Componentis) and 1 Closi...
] ” 23-1219:56:... | Infomation |Parsing | ...Finished Parsing: Retuming 17 Classified Tokenis)
Testing Table: Does this component function in accordance with the stipulated criteria?

Raw source is split at the [SplitAtChar|s, and remains
concatenated at WordCharljs.

Tokens are assigned their correct TokenTypes. E.g. [<| must be

identified as a (GrammarChar).

DocScript Logging reports the number of Tokens output by the

Parser (GetTokensFromSource()]).

Yes;
Tokens:
Function -
Void
Main
Yes;
Tokens Token Types
Function - Keyword -
<
Void [DataType]
S [GrammarChar]
Main [Tdentifier]
o [GrammarChar]
B [GrammarChar]
“IlineEnd}_ [LineEnd]
“output [Tdentifier]
e [Grammarchar]
Yes; i
{1 28.0118:02... Verbose | Parsing | Replaced 1 Sting Literal(s) with SLITe
| 28:0118:02.. |Verbose | Parsing | Segmented Clean Source into 28 Token(s)
7] 2601 18:02... |Verbose | Persing [lgnored 11 Nul Tokents)
i 1 28.0118:02... Verbose | Parsing |Checking that all Characters inthe SLIT-Stage Tokens z
17 2601 18:02... |Verbose | Parsing |Began Resubstiuting SLITs with StingLiterals..
17| 2601 18:02...|Verbose | Persing | Replaced 1 SLIT(s) with StingLterals)
{1 28.0118:02... |Verbose | Parsing | Began Classfication stage of Parsing
7] 2601 18:02... |Verbose | Persing | Detemined tht 6 relevant kems) out of 17 total emis}
7 2801 18:02.. |Verbose | Lexing | Ensuring th al Statements Opened are Closedin the cx
i 1 28.0118:02... Verbose | Parsing | Detemined that 2 relevant kem(s)out of 2total kemis)w.
N ESRE PRSP - Finched Paring: Retuming 17 Classfied Token’s)

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

The Parser detects if there is a mismatch between tokens which Partially:

should appear in pairs; it must ensure that for each opening Unbalanced brackets

bracket, statement, or quote, there is a corresponding closing and Statements

component. The validation herefor occurs in lLoop Function|are caught by

ContainsWellBalencedPairs(Of _TItems) (ByVa1| the mentioned function,

| AllTtems As _TItems(), ByVal ParamArray _Pairs As| whereas unbalanced string

Tuple(Of TItems, TItems)()) As Boolean|. literals e.g. or are
caught be the Token Classifier

Exceptions herefrom are passed down the call stack, until the instead:

user sees some form of message, depending on the DocScript 'A)

Implementation being used. I R -

~ (Logged) @GetToken:
-4 (Logged) @GetTyped
(Logged) [DSVa

aTokenType, It
Invalid Content (in [}
1

This still catches the Error, and
prevents further stages of
interpretation from getting
confused.

Action to take: Add a note
about this pair-like component
being caught at a later-than-
might-be-assumed stage of the
interpretation process, to the
Solution's Documentation txt.

Justifications for Actions Taken: By documenting the oddity, it can be found by anyone who might
look into why this behaviour occurs. It isn't a large enough oddity to warrant re-writing a component
of the parser, because for the oddity to be noticed, erroneous source is required in the first-place. In
other words, for this problem to occur, there already needs to be something quite erroneous about
the input source code, so restructuring how this downstream problem is handled, would do nothing
to solve the foundational issue.

Wait: Bootstrapping!

Writing the Parser has enabled me to notice a number of prerequisite utilities and components,
which — as | continue development — an increasing number of modules and classes will rely on.
Before | continue, therefore, | will take some time to properly implement each of the following...

Logging

| established in §Design that | would have a [CurrentLogEventHandler| object; a delegate pointing
to the Function to use for Logging. In addition to this declaration, however, | am also implementing
four BuiltInLogEventHandlers], to make it easy to pump s out to the surface for
debugging:

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

62 $ "' <summary>Contains a series of pre-defined ways of handling a LogEwvent</summary:
63 [H Public MotInheritable Class BuiltInlLocgEventHandlers
a4
65 REM Make this Class uninstanciatable from cutside
66 [Private Sub Mew()
67 | End Sub
68
69 EjC-I LogEvent Handler
99

1e6 ijUI LogEvent Handler

12@

121 EMsgBox LogEvent Handler

131

132 E[TextFile LogEvent Handler|

155

156 [jSilenceAll LogEvent Handleﬂ

165

166 | End Class

| then designed this window, for the [GUIDefault As LogEventHandlerl:

M DocScript Log Window oo e
File Edit Tools [| Sound [¥] Emor [¥] Waming V| Infomation [¥] Verbose [Debug
| Ico Time Severty Catagor Message

Count: 0

The [submitLogEvent()| method requires all parameters for a [LogEvent]..

<summary>Invokes the CurrentLogEventHandler with the specified Data for the LogEvent. A
1so checks that the CurrentLogEventHandler has been initialised with a Delegate.</summary>
Public Function SubmitLogEvent(ByVal _Message$, ByVal _Severity As LogEvent.DSEventSeverity
, ByVal _Catagory As LogEvent.DSEventCatagory) As LogEventSubmissionResult

...and is somewhat inconvenient to call when one only wants to log a single string with default
Severity and a predefined Category. Therefore, | am also defining some pre-defined QuickLog

Methods:

33 B#Region "QuickLag Methods"

3 |

35 B ' <summary>This is a QuicklLog Method</summary:

36 B Public sub LogDebugt (Byval _| , Byval _Catagory As LogEvent.DSEventCatagory)

37 SubmitlLogEvent (_Message, LogEvent.DSEventSeverity.Debug, _Catagory)

38 End Sub

39

48 E """ «summary>This is a QuickLog Method</summary:

a1 = Public Sub LogParsingMessage(ByVal _Message$, Optional ByVal _Severity As LogEvent.DSEventSeverity = LogEvent.DSEventSeverity.Verbose)
42 SubmitLogEvent(_ Message, _Severity, LogEvent.DSEventCatagory.Parsing)

43 End Sub

44

45 o """ <summary>This is a QuickLog Method</summary:

46 Public sub LoglLexingt (Byval _| » Optional ByVal _Severity As LogEvent.DSEventSeverity = LogEvent.DSEventSeverity.Verbose)
a7 SubmitlLogEvent (_Message, _Severity, LogEvent.DSEventCatagory.Llexing)

48 End Sub

49

58 E'_ """ «summary>This is a QuickLog Method</summary:

51 E Public Sub LogExecutionMessage{ByWal _Message$, Optional ByVal _Severity As LogEvent.DSEventSeverity = LogEvent.DSEventSeverity.Verbose)
52 SubmitLogEvent(_Message, _Severity, LogEvent.DSEventCatagory.Execution)

53 End Sub

54

55 E """ <summary>This is a QuickLog Method</summary:

56 & Public sub LogSyst (Byval _| » Optional ByVal _Severity As LogEvent.DSEventSeverity = LogEvent.DSEventSeverity.Verbose)
57 SubmitlLogEvent (_Message, _Severity, LogEvent.DSEventCatagory.System)

58 End Sub

59

6@ | #End Regicn

Custom Exceptions
In the Namespace, | have defined the following Exception Types...

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

| will have to add to these as the Project Develops. The clever thing about them is that they will

attempt to Log whatever the Exception Message is, through DocScript Logging, when Thrown. This

means that | don't need to write something like [LogError("Some Error..") : Throw New|

DSException("Some Error..")|because the latter instantiation of the Exception will automatically

perform the logging with a LogEvent of the Error Severity. Here's how the constructor calls
DocScropt Logging:

[
7
8
9
1e
2
3
5

= ' <summary>Attempts to Log the Exception Message, indicating weather this occour
= Public Sub New(Byval _Message$)

MyBase. New(
DSException.FormatMessage(

ed successfully or not in the Message Property</summary>

(Function(_LogSubmissionResult As Logging.logEventsubmissionResult) As String
Return If(_LogSubmissionResult.uWassuccessfull, ("(Logged) * & _Message), (“(Unlogged: " & _LogSubmissionResult.GeneratedException.Message & *) " & _Message))

End Function).Invoke(Logging.SubmitLogEvent("Exception: " & _Message, LogE

)

)
End Subl

KVP-Serialisation
This Module in the PocScript.Utilities| Namespace has been written to make it much easier to
consistently write the methods on Classes and Structures, which serialise Key-Value

Pairs within the object. For instance: could be a Key with the Value ['Ben"]. I have written one
method to output a String...

a
9
18

12

..JAn
21
22
23
24
25
26

Com

vent.DSEventSeverity.Error, LogEvent.DSEventCatagery.Unspecified})

- "' <summary:Returns a Serialised String form of the Object’s Key-Value Pairs specified</summary:
= Public Function GetKVWPString(ByVal Paramfrray _KeyValuePairs As String()()) As String

REM Input: {{"Line", "18"}, {"Column", ™"9"}}

REM Output: [Line="18", Column="9"]

d another to output XML via an XElement:

- """ <summary>Returns a Serialised XML form of the Object's Key-Value Pairs specified</summary:
- Public Function GetKVPXML(ByWVal _TagName$, ByVal ParamArray _KeyValuePairs As String()()) As XElement

Try

REM Input: {{"Line", "18"}, {"Column",

"g"1}

REM Output: <TokenLocation Line="18" Column="9"/>

piler-Extension Methods

There were a number of common tasks which | had to perform in the Parser's logic (such as

[removing trailing whitespace from a string], [repeating an object N times], or [matching a string

against a Regular-Expression]) which are made significantly more elegant and effortless when

implemented as Compiler-Extension Methods, rather than simple procedural functions.

Fori

nstance: Instead of declaring...

Public Function MatchesRegEx(ByVal _StringToValidate$, ByVal _RegExPattern$) As Boolean

...And calling in the fashion...

| If MatchesRegEx(_Token.Value, Parser.Constants.StringlLiteralRegExp) .. |

...l instead declare the method as an Extension, thusly:

<Global.System.Runtime.CompilerServices.Extension() >|

Public Function MatchesRegEx(ByVal _StringToValidate$, ByVal _RegExPattern$) As Boolean|

And simply call it as if it is a member of the String type:

| If _Token.Value.MatchesRegEx(Parser.Constants.StringlLiteralRegExp) .. |

This reduces intractable layers of brackets like |A(B(C(D)))|, and also gives a more object-orientated

feel;

D.C().B().A()]is easier to read.

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

Progress Check

At this point in the development,
| have written 14355 Lines of
code...

16000
14000
12000
10000
8000
6000
4000
2000
0

3
&
©
&

9%

9
v
o
N
N

Line Count

y &
Y
¢
N n® Ny >

Progress Recap: Where am | in the development plan? [Review]

e Done: | have written the Parser, and a number of bootstrapping prerequisites to aid in efficient
and robust implementation of the forthcoming stages.
e Next: | will write the lexing system. This is the second of three stages of DocScript interpretation.

Lexing

As a reminder (partly to myself), DocScript Lexing works like this:

e The Tokens generated by the Parser are passed into the constructor to the class.

e Inside this constructor, the Global VariableDeclaration|s and [Functionls are derived.

e ANew DSFunction|is constructed for each Function of the [Progran; the Tokens for the
Function are passed to its constructor.

e Inside the constructor, all the contents Instructions are derived from the remaining

Tokens, in a loop.

e Each [IInstruction|has a constructor which takes in the s required to construct it.

Expressions

The four Expression Classes (VariableExpr),

LiteralExpr,

OperatorExpr), and

IFunctionCallExpr]) are very similar to the eight Instruction Classes, except that they are not

independently valid as lines within a Function. Expressions appear as components of the following

Instruction Types: ReturnToCaller]|, VariableDeclaration|, VariableAssignment],

[FunctionCall], IfStatement],

WhileStatement] and |LoopStatement| (everything except from

DSFunction|).

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

Expression Classes
| have laid-out the PS. L.Expressions.VB]File like this:

1 Elhamespace Language.Expressions
2
3 :TI The Base Interface for all Expression Types (E.g. Implemented by LiteralExpr and VariableExpr)|
4 3 Public Interface IExpression ...|
9
10 I‘I The Base Interface for all Exprs that contain some form of child Exprs (E.g. Implemented by Functi0n|
11 # Public Interface ICompoundExpression |
14
15 =#Region "IExpression (& ICompoundExpression) Implementations”
16
17 #[LBL Placeholder Exprs|
115
116 ®[I0T Placeholder Exprs|
142
143 :+‘I Represents a DSString, DSNumber, or DSBoolean Li‘tera1|
144 Public Class LiteralExpr(0f TLiteral As {Variables.IDataValue, Class}) ‘
189
190 :TI Represents an Expr which is the result of reading a Variable's value from a SymbolTable‘
191 ¥ Public Class VariableExpr .. |
242
243 E‘ Holds the Arguments and Identifier of a Function, ready for this to be called during Resolve()|
244 & Public Class FunctionCallExpr |
204 |
385 E‘ Holds the Operands and OperatorlLiteral of a DSOperator]
386 & Public Class OperatorExpr |
432
433 | #End Region
434
435 End MNamespace

[Above] Namespace: DocScript.Language.Expressions

1
143 :*I-IIRe-presents a DSString, DSNumber, or DSBoolean Liter“all
144 = Public Class LiteralExpr(Of TLiteral As {Variables.IDataValue, Class}) : Implements IExpression

145

146 Public ReadOnly LiteralValue As TlLiteral

147 Public ReadOnly ScurceToken As Runtime.Token

148

149 o Public Sub New(ByVal _LiteralValue As TLiteral, Opticnal ByVal _SourceToken As Runtime.Tcken = Mothing)

150 If Not Variables.variableUtilities.IsNonVoidFunctionReturnType(GetType(TLiteral)) Then Throw New Exception("The specified TLiter
151 Me.SourceToken = _SourceToken

152 Me.LiteralValue = _LiteralValue

153 End Sub

154

155 ® [Publi(Function Resolve(ByVal _InputSymbolTables As Runtime.SymbolTablesSnapshot) As Instructions.ExecutionResult Implements IExpres
173 |

174 = [Publi(Function GetLBLComponentString() As String Implements IExpression.GetlLBLComponentString ...

177 |

178 Il-l [Retur‘ns what the Expression would have looked like in the Source|

179 = [Publi(Overrides Function ToString() As String ‘

182 |

183 Il-l [Retur‘ns a serialised form of all the Data for the Expression, as needed to form a graphical Expressi]

184 & [Publi(Function GetExprTreeNodeXML() As System.Xml.Ling.XElement Implements IExpression.GetExprTreeNodeXML ...
187

188 | End Class|

[Above] Class: LiteralExpr

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

190 iHRepresents an Expr which is the result of reading a Variable's value from a SymbclTablﬂ
= Public Class VariableExpr : Implements IExpression

191
192
193

194

195
196
197
198
199
200
201
226
227
230
231
232
235
236
237
240
241

243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
288
281
284
285
286
289
299
291
302
383

- —— B —— (]

¥
=

[—-[]—IE

B Bl —

Public ReadOnly Identifier$
Public ReadOnly SourceToken As Runtime.Token 'Initialised to Nothing if not passed to Constructor

Public Sub Mew(ByVal _Identifier$, Optional ByVal _SourceToken As Runtime.Token = Nothing)
Me.SourceToken = _SourceToken
Me.Identifier = _Identifier
End Sub
Public Function Resolve(ByVal _InputSymbolTables As Runtime.SymbolTablesSnapshot) As Instructions.ExecutionResult Implements IExpre:
Public Function GetLBLComponentString() As String Implements IExpression.GetLBLComponentString ...
Returns what the Expression would have looked like in the Source
Public Overrides Function ToString() As String ...
Feturns a serialised form of all the Data for the Expression, as needed to form a graphical Expressﬂ
Public Function GetExprTreeNodeXML() As System.Xml.Ling.XElement Implements IExpression.GetExprTreeNodeXML ...

End Clasﬂ

[Above] Class: VariableExpr

Polds the Arguments and Identifier of a Function, ready for this to be called during Resolve(ﬂ

Public Class FunctionCallExpr : Implements ICompoundExpression

hhe Identifier of the target DSFunction or BIF
Public ReadOnly Identifier$
hhe UNRESOLVED Arguments to apply to the Target Function at CallTime. SymbolTables are required to ﬂ
Protected ReadOnly Arguments_ As IExpression()
Public ReadOnly Property SubExpressions As IExpression() Implements ICompoundExpression.SubExpressions
Get
Return Me.Arguments_
End Get
End Property
Public Sub New(ByVal _Identifier$, ByVal _Arguments As IExpression())
‘We can only lookup how many Arguments the corrosponding DSFunction wants when we have the Symbol Table
‘Therefore, this validation must occour later
Me.Identifier = _Identifier : Me.Arguments_ = _Arguments
End Sub
Public Function Resolve(ByVal _InputSymbolTables As Runtime.SymbolTablesSnapshot) As Instructions.ExecutionResult Implements IExpre
Public Function GetlBLComponentString() As String Implements IExpression.GetlBlLComponentString ...
meturns what the Expression would have looked like in the Scurcﬂ
Public Overrides Function ToString() As String
meturns a serialised form of all the Data for the Expression, as needed to form a graphical Expressﬂ
Public Function GetExprTreeModeXML() As System.Xml.Ling.XElement Implements IExpression.GetExprTreeNodeXML ...

End Class

[Above] Class: FunctionCallExpr

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

305 #folds the Ope
186 = Public Class
387

ds_and OperatorLiteral of
ratorExpr : Implements ICon

308 Public ReadOnly OperatorChar As Char REM E.g. "&"c
el

310 Protected ReadOnly Operands_ As IExpression()

311 Public ReadOnly Property SubExpressions As IExpression() Implements ICompoundExpression.SubExpressions

312 Get

13 Return Me.Operands_

314 End Get

315 End Property

116

317 Public Sub New(ByVal _OperatorChar As Char, Byval _Operands As LExpression())

318

319 REM Ensure that there is a DSOperator for the specified _OperatorChar

320 If Not Operators.DSOperators.ContainsKey(_OperatorChar) Then Throw New DSValidationException("The OperatorExpr could not be constructed because the specified OperatorChar does no
321

322 REM There must be two operands for a Binary Operator...

If Operators.OperatorUtilities.IsBinaryOperator(_OperatorChar) Then If ot _Operands.length = 2 Then Throw New DSValidationException("The No. Operands specified to a New Operator

REM ...And one for a Unary Operator
If Operators.OperatorUtilities.IsUnaryOperator({_OperatorChar) Then Lf Not _Operands.Length = 1 Then Throw New DSValidationException("The No. Operands specified to a New OperatorE

328 Me.OperatorChar = _OperatorChar : Me.Operands_ = _Operands
329
330 End Sub

e Public Function GetlLBLComponentString() As String

esolve(Byval InputSymbolTables As Runtd

485
406 ® what the e
407 B Overrides Function

tring
417
418 ®
419 ¥
438
431 | End Class|

ssion, as

n of all the Data for the Ex
eelodeXML() As System.Xml

q.XElement

[Above] Class: OperatorExpr

Notably, the constructors to the IExpression types do not take in the Tokens required to construct
each type of expression. This is because it is very difficult to determine what type of expression a set
of tokens represents, just by looking at the tokens in order. At the token-level, it cannot even be
guaranteed that the tokens make up a syntactically-valid expression. If done via the token-accepting

constructors' method, each compound-expression type (OperatorExpr| (because of Operands) and
IFunctionCallExpr] (because of Function Arguments)) would also have to determine the type of its

child expressions. This would be needlessly over-complicated.

ConstructExpressionFromTokens()
For these reasons, | am instead going to use a single function called
IConstructExpressionFromTokens ()], which takes in an array of Tokens, and returns whatever the

top-most Expression of the resultant Tree is. | have implemented it thusly:

Public Function ConstructExpressionfromTokens(ByRef _RawTokens As Runtime.

Token()) As Iexpre
Try
LogLexingMessage(“Beginning the construction of an Expression from Tokens...~)
REW —e— = .
REM | Docscript Expr. Tree Construction Process |
REN

REM 1) Initial v

REM
REM

REM [_Ra ifiedlBL] - [_ExprT t]

Call PerforaInitialValidationOnRawTokens_(_RawTokens) ‘Throws Exce if anything's ou d

Dim _ToplLevellBL As TExpression() = ProducelBL_(_RawTokens).Item2

Dim _simplifiediBL As IExpression() = SimplifyLBL_(_ToplevellBL) : LoglexingMessage("The Top-Level LBL was simplified from " & _TopLevellBL.Length.Tostring() & “ into " & _SimplifiedLBL.Length.Tostring() & = LBL C
EM Ensure that the simplification hasn’t made the Expression Empty

If (_SimplifiedLBL.Length - @) Then Throw New tionException(“After simplifying the LBL, it was found to be empty”, "ConstructExpressionFromTokens()_Simplified(BL")

“Throws any exceptions if something is found to be invalid

ValidatelBL_(_SimplifiedlBL) : LogLexingMessage("A Components was found to be Valid and well-formed")

_SimplifiediBL.ToList().ForEach(Sub(_LBLComponent As 1Expression) LogDebugMessage(~simplified & Validated LEL Component: " & _LBLComponent.GetLBLComponentString(), LogEvent.DSEventCatagory.Lexing))

Dim _ExprTreeRoot As IExpression = CollapseToIOT_(_SimplifiedtBL)

LogLexingMessage(”...Finished constructing an Expression from Tokens; returning Root IExpression of type “ & _ExprireeRoot.GetType().Name.InSquares())

Return _ExprTreeRoot

74 Catch _Ex As Exception : Throw New DSException("@ConstructExpressionfromiokens: " & _Ex.Message, _Ex) : End Try
€nd Function

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

It relies of these 600 lines of backend functions:

125 H#Region "Expression Utility Functions”

126

127 & [Ensures that the Tokens are of permitted TokenTypes, and that there are equal numbers of opening and
128 & Private Sub PerformInitialValidationOnRawTokens (ByRef RawTokens As Runtime.Token()) ...|

159

168 FEtLr‘ns [the Index of the Last Token read by that call], and [the LBL generated from the Tokens r‘sad‘
161 = \P";'ﬂ.-ate Function ProducelBL (ByRef Tokens As Runtime.Token(), Optional Byval TokensStartAt% = @) As Tuple(Of Int32, IExpression()) ‘
268

269 \?emo\-’as and one-child BracketedExprs, recursively inside BracketedExprs and FunctionCalls tDo‘

278 \P";’ﬂ.-ate Function SimplifyLBL (Byval LBL As IExpression()) As IExpression() |

343

344 o [Ensures there are no occourances of Illegal patterns in the LBL

345 [Private Sub ValidatelBL (ByVal LBL As IExpression(})) -..

465

466 [\Used by the CollapseTolOT () Method to order the C-perator‘Tu:le5|

467 @ [private Class OperatorTupleComparer ...

531

532 H hemc\-’es LBL-Only IExprs and forms the Expr. Tree and adds in the [OperatorExpr]s and [Func:iancallz#
533 ® \P"ix-ate Function CollapseToIOT_(Byval ValidatedLBL As IExpression()) As IExpression |

71e

711 | #End Region

How does that work then?
The basic principle for Expression Construction in DocScript is that a Linear Bracketed Level (LBL) is

recursively produced for the expression. This is a top-level view of the expression, only caring about
the sub-expressions which are connected by operators. Any sub-expressions implicated only by
being arguments to a FunctionCall Expr, or by being components inside a BracketedExpr, are not
visible from the LBL; they are abstracted away. The recursive part comes in here: Each
[BracketedExpr] or FunctionCall() is itself represented as a Linear Bracketed Level. Each LBL can
contain child LBLs of its own.

Once the LBL is produced, it's just a matter of simplifying it to the base-most form (for instance:
[[[3]]]1)would be simplified to just), and then validating it. During the LBL validation, the LBL is
compared against a number of different invalid patterns. For instance {A Binary Operator} followed
by {Another Binary Operator} is an invalid pattern for a DocScript Expression. Detailed and verbose
error messages result from a validation-pattern-violating expression, which is beneficial to the
programmer.

Testing: Example Constructed Expression Trees
Implementing that into a simple [Source - Tokens = Expression] window on the
DocScript.Experimentation project, shows clearly what the expression trees look like for input

expressions:
6 * 4
% ExprTree for "6 * 4" = | = 2 |I
View XML '

[Expr XML for "6 = 4"

<OperatorBxpr OperatorChar="""»

[E «Literal Expr Literal Type="MUMBER" Literal\Value="6" /=
] «Literal Bxpr Literal Type="MUMBER" LiteralValus="4" /=
- «/OperatorExpr

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

bS_String_ToUpper(“Hello, " & Nameﬂ

=

% ExprTree for "DS_String_Toll... | =

a1 |
= 22 | |R-'--::-'.'|--. LEL-Only IExprs and forms the Expr. Tree

]

|l-"'i'v'a:e Function CollapseTolOT (ByWal ValidatedLBL A:

View XML

and

‘ Expr XML for "DS_String_TolUpper("Hello, * & Mame)"

<FunctionCallBxpr |dentifier="05_5tring_TolUpper">
«OperatorBxpr OperatorChar="&">
<LiteralBxpr Literal Type="5TRING" LiteralValue=""Hello, "" />
<\arableBxpr [dentfier="MName" /=
«/OperatorExpr
</FunctionCall Exprs|

hrue ' False | [True ' -False | qqualseH
| (% ExprTree for "True False | T.. | =B S

=] =10 | Q 1= 1|

100 | 7 |

Wiew XML

.%rom Tokens; returning Root IExpression of type " & _ExprTreeRoo

E--Expr (OperatorExpr)

ST

Expr XML for "True * False | True * - False | = - - False”

kOperatorExpr OperatorChar="]">
<OperatorbExpr OperatorChar="">
<LiteralExpr Literal Type="BOOLEAN" LiteralValue="True" />
<LiteralExpr Literal Type="BOOLEAN" LiteralValue="False" />
</OperatorExpr>
<OperatorBExpr OperatorChar="T"
<OperatorExpr OperatorChar="">
<LiteralBxpr Literal Type="BOOLEAN" LiteralValue="True" /=
<Operatorbxpr OperatorChar="-">
<l iteralExpr Literal Type="BOOLEAN" LiteralValue="False" />
</OperatorExpr>
</OperatorExpr>
<OperatorExpr OperatorChar=
<Operatorbxpr OperatorCha
<Operatorbxpr OperatorChar="-">
<literalBExpr Literal Type="BOOLEAN" LiteralValue="False" />
</OperatorExpr>
</OperatorExpr>
</Operatorbxpr=
</Operatorbxpr=
</ Operatorbxpr=

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

Debugging
| identified a bug whereby the case of string literals was not being preserved. As can be seen here, |

have 4 case-variations of the string literal "RE", but in the resultant Expression Tree, they are all

appearing in lower-case!

mDutEmeSSMH:|I“3|F{Getﬁge{), GetTom(3,3,4,6), "re", "RE", "rgE", "Re")

Resalve

Qutput:

<OperatorExpr OperatorChar="""%
<VariableExpr Identifier="I" />
<OperatorExpr OperatorChar="|"»
<LiteralExpr LiteralType="DSNumber” LiteralValue="3" />
<FunctionCallExpr Identifier="F"2
<FunctionCallExpr Identifier="GetAge" />
<FunctionCallExpr Identifier="GetTom":»
<LiteralExpr LiteralType="DSNumber” LiteralValue="3" />
<LiteralExpr LiteralType="DSNumber” LiteralValue="3" />
<LiteralExpr LiteralType="DSNumber” LiteralValue="4" />
<LiteralExpr LiteralType="DSNumber" LiteralValue="8&" />
</FunctionCallExpr>
<LiteralExpr LiteralType="D55tring" LiteralValue="" ;[Rquot;"”
<LiteralExpr LiteralType="DSString" LiteralValue=""refquot;"
<LiteralExpr LiteralType="DSString" LiteralValue=""refquot;"
<LiteralExpr LiteralType="DSString" LiteralValue=""refquot;"
</FunctionCallExpr:>
</OperatorExpr>
</OperatorExpr>

My initial conclusion, was that | must have been unwittingly [ToLower ()|-ing the string literal's value
somewhere in the chain of functions it was being passed around. However, on stepping through

(with F8 in Visual Studio), | realised that what was actually happening, was this:

One of the very first things the Parser does, is to replace any string literals, with String-Literal-
Indication-Tokens (SLITs). This is done via a regular expression which matches any character

sequence starting and ending with the [StringLiteralStartEndChar| (as defined in the

language-level constants). The SLIT with which the string literals are replaced takes the form
SSLIT_{Number}$, e.g. for the first string-literal. The original strings are stored in the
SLIT-Table (a [List(0f String)|), where the index of each String-Literal value is its SLIT
{Number}.

Much later on during parsing, when it comes to substituting the SLITs for the String-Literals

again, the Microsoft.VisualBasic.Val()|function is used, in order to extract an Int32 SLIT-

Table Index, from the SLIT itself. My understanding of this function was as follows: It looks at the
input string, ignores any non-digit characters, and then parses an Int32 from those remaining
digit chars. However, after some quick testing in the Immediate Window in Visual Studio, |
realised that it behaves a lot more inconsistently than | was hoping for. Therefore, | replaces this
call to with the simple LINQ-expression [Convert.ToInt32(New|

[[String](_ SLIT.Where(AddressOf [Char].IsDigit)))|which Ishould really have used in
the first place.

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

e Lesson: BEWARE THE ARCHAIC VB6 FUNCTIONS!

Exchanging the Visual Basic 6 Function for a .NET replacement fixed the problem, so now, the
correct Expression Tree is produced! {,

(% Expriree for ™" & Re" & .. = =1 53 |ge-level constants). The SLIT with

View XML
5-Expr (OperatorExpr) Expr XML for ""re” & "Re” 8 "rE" & "RE™ «
EI _____ & kOperatorExpr OperatorChar="4amp;">

<DperatorBxpr OperatorChar="8amp;">
<OperatorBxpr OperatorChar="&" >
<LiteralExpr Literal Type="STRING" LiteralValue="8quct refquot;" />
<literalBxpr Literal Type="STRING" LieralValuz="4quaot;Redquat;"” /=

</OperatorExprs>
<l iteralBxpr Literal Type="STRING" LiteralValue="quet rE&quet;" />
</OperatorExprz
«Literal Bxpr Literal Type="STRING" LiteralValue="4quot: RE&quat ;" />
«/OperatorExpr

The extra line required for that fix accrues to the total of...

Line Count
25000
Progress Check | ...,
At this point in the development, 15000
| have written 22419 Lines of 10000
code...
5000
0
05/06/2022 05/07/2022 05/08/2022 05/09/2022

Instruction Classes

Of the eight [IInstructionl-derived classes, four of them ONLY implement [IInstruction|, and do
not implement [IStatement]. In other words, VariableDeclaration|, VariableAssignment],

ReturnToCaller], and [FunctionCall|are just [IInstruction]s, whereas [IfStatement

WhileStatement] [LoopStatement] and PSFunction|implement [IStatement] (and thereby
implicitly also [IInstruction|) and therefore contain their own child Instructions.

Terminal Instructions
Because the terminal Instructions are the simpler subset, | shall begin with them.

VariableDeclaration

The first is the VariableDeclaration| whose task it is to store a DataType, Identifier, and

(optionally) AssignmentExpression, which will be used during Execution. | implemented the Class as
follows...

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

&3
B

-Namespace Language.Instructions

[Represents E.g. [&1t;String> Name : "Ben"]
Public Class VariableDeclaration : Implements DocScript.Language.Instructions.IInstruction

-/ #Region "Declarations specific to this IInstruction”

Public DataType As Type 'An IDataValue-based Type
Public Identifier As [String]
Public AssignmentExpr As Language.Expressions.IExpression = Nothing

12 | #End Region

[T-01]

...And that

Protected ReadOnly Tokens_ As Runtime.Token()

‘"' <summary>Constructs the IInstruction from its Tokens</summary>
Sub New(ByRef _Tokens As Runtime.Token())

Me.Tokens_ = _Tokens : Me.ProcessTokensToInitialiseFields()
End Sub

ProcessTokensToInitialiseFields ()| Method looks like this:

21 = Public Sub ProcessTokensTolnitialiseFields()

22 Try : LoglexingMessage(“Began constructing a VariableDeclaration...")

23

24 REM Source should look like:

25 REM <String> Name

26 REM <Boolean@> _Pixels : GetImageRow(0)

27

28 REM Tokens should look like:

29 REM [GrammarChar], [DataType], [GrammarChar], [Identifier], [LineEnd]

30 REM [GrammarChar], [DataType], [GrammarChar], [Identifier], [ExprTokens...], [LineEnd]

31

32 REM Fields to Initialise:

33 REM DataType

34 REM Tdentifier

35 REM AssignmentExpr (Can be Nothing)

36

37 REM Ensure that there are enough tokens to construct the IInstruction

L] | If Me.Tokens_.Count < Runtime.TokenPatternValidation.MinimumRequiredTokens.Item(Me.GetType()) _

EL] | Then Throw New DSValidationException(String.Format("The No. Tokens ({@}) was less than the minimum No. Tokens required to construct the Instruction ({1}).", Me.l
40

41 REM Ensure that the last Token is a {LineEnd}

42| If Not Runtime.BuiltInTPVs.LineEnd TPV.IsSatisfiedBy(Me.Tokens_.Last()) _

43 Then Throw New DSUnexpectedTokenException(“The Last Token was not a {LineEnd}", Me.Tokens_)

44

45 REM Ensure that the main TPV herefor is satisfied

46 Runtime.BuiltInTPVs.VariableDeclaration_UpToIncIdentifier TPV.EnsureIsSatisfiedBy(Me.Tokens)

47

42 REM The DataType should be derivable from the 2nd Token

49 Me.DataType = DocScript.Language.Variables.VariableUtilities.GetDSVariableType FromDataTypeString(Me.Tokens_(1).Value)
58

51 REM The Identifier should be derivable from the 4th Token

52 Me.Identifier = Me.Tokens_(3).Value

53

54 REM If there is an AssignmentExpr, derive it from all Tokens after the Sth one (6th onwards...)

55 If Me.Tokens_.Length > 5 Then 'There should be an AssignmentExpr

56

57 ‘There should be at least 7 Tokens

58 ‘<String> Name : “Ben" {LineEnd}

sa If Not (Me.Tokens_.Length »>= 7) _

] | Then Throw New DSUnexpectedTokenException("Despite there being [more Tokens than the number needed for a VariableDeclaration without an Assignment Expressic
61

62 ‘Token 4 should be the Assignment Operator

63 If Not Runtime.BuiltInTPVs.AssignmentOperator TPV.IsSatisfiedBy(Me.Tokens_(4)) _

64 Then Throw New DSUnexpectedTokenException("Despite there being [more Tokens than the number needed for a VariableDeclaration without an Assignment Expressic
65

66 *Tokens after Token 4 (5 onwards...) should form the AssignmentExpr, up to the {LineEnd}

67 Me.AssignmentExpr = Expressions.ConstructExpressionFromTokens(

68 Me.Tokens_ _

69 .Skip(5).ToArray() _

70 .UpToButExcluding(AddressOf Runtime.BuiltInTPVs.LineEnd_TPV.IsSatisfiedBy)

71)

72

73 End If

74

75 LogLexingMessage("...Finished constructing a VariableDeclaration Object for " & Language.Constants.OpeningDataTypeBracket & Variables.VariableUtilities.GetDataTy
76 Catch _Ex As Exception : Throw New DSException("@VariableDeclaration\ProcessTokensToInitialiseFields: " & _Ex.Message, _Ex) : End Try
77 | End Sub

Testing

Because both Functions and Global-Variable-Declarations can appear at the top-statement

(program) level, | can test this VariableDeclaration class, by writing a simple

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

implementation:

23 = Public Sub ConstructProgram{) Handles ConstructProgButton.Click
24 Try
25
26 InitialiseDocScriptStuff()
27
28 Dim _Program As DocScript.Runtime. Program = DocSeript.Runtime.Progrom. FromSource(Me. SourceTextBox. Text, DocScript.Runtime.ExecutionContext. GUIDefault)
29
38 Me.ProgramTreeView.BeginUpdate()
31 Me.ProgranTreeView.Nodes.Clear()
32
33 Dim _ProgramRootHode As New Treelode(“Program”) With {.BackColor = Color.FromArgb(192, 255, 192)}
34 Dim _GlobalVarDecsNode As New Treehode("GlobalVarDecs") With {.BackColor = Color.FromArgb(192, 192, 255)}
Dim _FunctionsNode As New TreeNode(“Functions”) With {.BackColor = Color.FromArgb(255, 192, 255)}
36
37 ‘Global Var Decs
38 For Each _VarDec As DocScript.language.Instructions.VariableDeclaration In _Program.GlobalVarDecs
39 _GlobalvarDecshode . Nodes . Add(New TreeNode(Text:=
a0 DocScript.Language.Constants.OpeningDataTypeBracket & DocScript.language.Variables.VariableUtilities.GetDataTypeString FromDSVariableType(VarDec.DataType) & DocScript
a1 3]
az Next
a3
a4 "Functions
as For Each _Function As Language.Instructions.Statements.DSFunction In _Program.Functions
26 _FunctionsNode.Nodes . Add(New Treelode(Text:=
47 Language.Constants.Keyword_Function & " "c & DocScript.language.Constants.OpeningDataTypeBracket & DocScript.language.Variables.VariableUtilities.GetDataTypeString FromD:
ag b}l
a9 Next
58
51 _ProgramRootHode . Nodes . Add(_GlobalVarDecsNode) : _ProgramRootNode.Nodes.Add(_FunctionsNode)
52 Me.ProgranTreeView.Nodes . Add(_ProgramRoothode)
54 Me.ProgranTreeView. EndUpdate()
55 Me.ProgranTreeView.ExpandAll()
56
57 Me.ProgranXMLTextBox.Text = _Program.ProgranTreexML.ToString()
58
59 Catch _Ex As Exception When True : MsgBox(“"Exception: " & vbCrLf & vbCrLf & _Ex.Message, MsgBoxStyle.Critical, _Ex.GetType().Fulllame) : End Try
60 End Sub

This —along with a simple testing window in the DocScript.Experimentation project, allows me to see

that Program Construction is working correctly, with just Global VariableDeclarationls:

,
e B

DocScript Source:
#TestProgram.D5 -
<String> Name : "Ben"” & " " & "Mullan" DSE Form
<Number@> Ages | E ion _ |
Function <Void> Main () Farser Experi
EndFunction | il |
| Program Construction |
- | Instruction Trees |
= Program | SQAL Experiments |
[l GlobalVarDecs
i~ <STRING> Name : "Ben" &" " & "Mullan” | BIF Experiments |
.~ <NUMBER@3 Ages (Unsssigned)
[=)- Functions | Construct Program I

L FUNCTION <VOID> Main {0 Parameters) {0 Instructions)
0L | SubStaFromRemain |

FuncCall I
<Program: - | Warbssign | Re;turm

<VarableDeclaration Data Type="5TRING" Idertifier="Name">
<Assignmert Expr> Repeat{Of T| Tabbedl
«OperatorBxpr OperatarChar="& "> epeat(| g nBy |
OperatorBxpr OperatorChar="8amp;">
<LiteralBxpr Literal Type="STRING" LiteralValue="2quot Ben&quoat;" />
<LiteralExpr Literal Type="STRING" LiteralValue="&quct; "" />

GetSubStatementTokens |

</Operatorbxpr> Splitwh BalencedFilterin
<Literal Bxpr Literal Type="5TRING" LiteralValue="" Mullan" ;" /= ere()
</OperatorExpr> < IsSatisfiedBy() |

VariableAssignment, ReturnToCaller, and FunctionCall
The other three terminal instructions are fairly simple and similar; they accept Tokens to their

constructors, and call an internal ProcessTokensToInitialiseFields ()| method. The classes look
like this:

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

1 Namespace Language.Instructions
2 |

3 Represents E. Name : “Ben"

a = Public Class VariableAssignment : Implements DocScript.language.Instructions.IInstruction

5

6 E‘#Ragion "Declarations specific to this IInstruction”

7

8 Public TargetVariable_Identifier As [String]

9 Public AssignmentExpr As Language.Expressions.IExpression

10

11 | #End Region

12

13 Protected ReadOnly Tokens_ As Runtime.Token()

14

15 B [constructs the IInstruction from its Tokens|

16 E sub New(ByRef _Tokens &s Runtime.Token())

17 Me.Tokens_ = _Tokens : Me.ProcessTokensToInitialiseFields()

18 End Sub

19

20 & Fublic Sub ProcessTokensToInitialiseFields()

21 Try : LoglexingMessage(“Began constructing a VariableAssignment.

22

23 REM Source should look Like:

24 REM Age : [5 * 6]

25

26 REM Tokens should look Like:

27 REM [Identifier], [DSOperator], [ExprTokens...], [LineEnd]

28

29 REM Fields to Initialise:

30 REM Targetvariable Identifier

31 REM AssignmentExpr

32

33 REM Ensure that there are enough tokens to construct the IInstruction

34 If Me.Tokens_.Count < Runtime.TokenPatternValidation.MinimumRequiredTokens.Item(Me.GetType()) Then Throw New DSValidationException(String.Format("The No. Tokens ({@8}) wa
35

36 REM Ensure that the last Token is a {LineEnd}

37 If Mot Runtime.BuiltInTPVs.LineEnd_TPV.IsSatisfiedBy(Me.Tokens_.Last()) Then Throw New DSUnexpsctedTokenException("The Last Token was not a {LineEnd}", Me.Tokens_)
38

39 REM Ensure that the main TPV herefor is satisfied

a8 Runtime.BuiltInTPVs.VariableAssignmet_TPV.EnsurelsSatisfiedBy(Me.Tokens_)

L5

42 REM The TargetVariable Identifier should be derivable from the 1st Token

43 Me.TargetVariable_Identifier = Me.Tokens_(@).Value

24

15 REM Tokens after Token 1 (2 onwards...) should form the AssignmentExpr, up to the {LineEnd}

45 Me.AssignmentExpr = Expressions.ConstructExpressionFromTokens (Me.Tokens_.Skip(2).ToArray().UpToButExcluding(AddressOf Runtime.BuiltInTPVs.LineEnd_TPV.IsSatisfiedBy))
47

a8 LoglLexingMessage("...Finished constructing a VariableAssignment Object for " & Me.TargetVariable Identifier.InSquares())
49 Catch _Ex As Exception : Throw Hew DSException(“@VariableAssignment\ProcessTokensToInitialiseFields: " & _Ex.Message, _Ex) : End Try
58 End Sub

51

52 & ny Expressions or Child Instructions executed har"e_b}’. are returned in the ExeRes's UpstairsExecutiol

53 & Public Function Execute(ByVal InputSymbolTables As Runtime.SymbolTablesSnapshot) As ExecutionResult Implements ITInstruction.Execute
89

9 & Returns an XML Representation of the Instruction, with all Pr‘nEltiES and Child Structres included|

ol & Public Function GetProgramTreeNodeXML() As System.Xml.Ling.XElement Implements IInstruction.GetProgramTreeNodeXML

99
100 B Returns what the Instruction would have looked like in the Source, without an extra LineBreak on the
101 E Public Overrides Function ToString() As String ...|

11@

111 End Class

112

113 | End Namespace

[Above] Class: VariableAssignment

1 =Namespace Language.Instructions
2
El= " ¢summary>Represents E.g. [Return "Ben”]</summarys
4 H Public Class ReturnToCaller 1 DocScript. Langua Instructi IInstruction
5
6 El#Region "Declarations specific to this IInstruction”
7
5 E [If there wasn't an associated Expr in the source, then this is Nothing (null)|
a Public ReturnValueExpr As Expressions.lExpression = Nothing
1e
11 | #End Region
12
13 Protected ReadOnly Tokens_ As Runtime.Token()
14
15 ® [Constructs the IInstruction from its Tokens|
16 B [Sub New(ByRef Tokens As Runtime.Token()) ...|
19
2 E Public Sub ProcessTokensToInitialiseFields()
21 Try : LoglexingMessage("Began constructing a ReturnToCaller Object...")
22
23 REM Source should look like:
24 REM Return
25 REM Return "Expression”
26
27 REM Tokens should look like:
28 REM [Keyword], [LineEnd]
29 REM [Keyword], [ExprTokens...], [LineEnd]
30
31 REM Fields to Initialise:
32 REM ReturnvalueExpr (Can be Nothing)
33
34 REM Ensure that there are enough tokens to construct the IInstruction
35 If Me.Tokens_.Count < Runtime.TokenPatternValidation.MinimumRequiredTokens.Item(Me.GetType()) Then Throw New DSValidationException(String.Format("The No. Tokens ({8}) was less than the minimum No. Toke
36
37 REM Ensure that the last Token is a {Lineend
38 If Not Runtime.BuiltInTPVs.LineEnd TPV.IssatisfiedBy(Me.Tokens_.Last()) Then Throw New DSUnexpectedTokentxception("The Last Token was not a {Lineend}”, Me.Tokens_)
EY)
a8 REM Ensure that the main TPV herefor is satisfied
41 Runtime.BuiltInTPVs.Keyword_Return_TPV.EnsurelsSatisfiedBy(Me.Tokens_)
42
43 REM Only Initialise the ReturnValueExpr, if there is such an Expr in the Source Tokens
2 REM Tokens after Token 8 (1 onwards...) should form the AssignmentExpr, up to the {LineEnd}
as If Me.Tokens_.Length >= 3 Then Me.Returnvalueexpr = Expressions.ConstructExpressionFromTokens (ie.Tokens_.Skip(1).ToArray().UpToButexcluding(addressof Runtime.BuiltInTPVs. Linesnd TPv.Issatisfiedsy))
a6
a7 LogL .Finished constructing a ReturnToCaller Object, with” & If(Me.ReturnValueExpr Is Nothing, "out”, "") & " a ReturnValue Expr”)
48 Catch _Ex As Exception : Throw New DSException(“@ReturnToCaller\ProcessTokensToInitialiseFields: " & _Ex.Message, _Ex) : End Try
49 End Sub
58
51 E [any Expressions or child Instructions executed hereby, are returned in the ExeRes's Upstair id
52 @ [public Function Execute(Byval InputSymbolTables As Runtime.SymbolTabl) As ExecutionResult Implements IInstruction.Execute
84
85 B [Returns an XML Representation of the Instruction, with all Propities and Child Structres included|
86 B [pubTic Function GetProgramTreehodeXiL() As System.Xml.ling.XElement Implements IInstruction.GetProgramireshodeXii
B
95 @ [Returns what the Instruction would have looked like in the Source, without an extra LineBreak on the
96 E [pubTic Overrides Function Tostring() As String
1085
106 end Class
107
108 | End Namespace]

[Above] Class: ReturnToCaller

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

1 ENamespace Language.Instructions

2

ER::

4 B public Class ncall : Inplements DocScript.language.Instructions.IInstruction

s

6 Ei#Region "Declarations specific to this IInstruction”

7

s Public Targetfunction Identifier As [String]

s Public Arguments As Language.Expressions sion() 'If there are no Arguments, then this is an Empty Array (not Nothing)

10

11 |#End Region

12

13 Protected Readonly Tokens_ As Runtime.Token()

14

15 B [Constructs the IInstruction from its Tokens

15 @ [5ub New(ByRef Tokens As Runtime.Token()) ...

19

20 © Public Sub ProcessTokensTolnitialiseFields()

2 Try : Loglexinghessage(Began constructing a Functioncall...”)

2

3 REM Source should look like

24 REM GetAge(“Ben”, [5 - 2], GetAddr(“Sen”, 15_1@))

25

26 REM Tokens should look like

27 REM [Identifier], [GrammarChar], [ExprTokens...Comma...], [GrammarChar], [LineEnd]

28

29 REM Fields to Initialise:

30 REM TargetFunction Identifier

1 REM Arguments

2

33 REM Ensure that there are enough tokens to construct the IInstruction

34 If Me.Tokens_.Count < Runtime.MinimunRequiredTokens (Me.GetType()) Then Throw New DSValidationException(String.Format("The No. Tokens ({B}) was less than the minimum No. Tokens required to construct the Instruction ({1
35

35 REM Ensure that the last Token is a {LineEnd

37 If Not Runtime.BuiltInTPVs.LineEnd_TPV.IsSatisfiedsy(Me.Tokens_.Last()) Then Throw New DSUnexpectedTokenxception(“The Last Token was not a {LineEnd)", Me.Tokens_)
38

39 REM Ensure that the main TPV herefor is satisfied

a0 Runti {1£InTPVs. Functioncall Up P - TPV Ensurel: _Tokens_)

a1

22 REM The TargetFunction Identifier should be derivable from the 1st Token

a3 Me.TargetFunction_Tdentifier = Me.Tokens_(@).value

aa

a5 “We now need to work out how many Arguments there are.

45 If Me.Tokens_.Length < 5 Then : He.Arguments = {}

47 Else

a8

a9 ‘There are some Arguments

s0 “We can just piggy-back off of the FunctionCallExpr Logic we've already written in the [Expressions] Namespace

51 *...Which can lex and seperate the Arguments for us.

52

53 Din _exp allTokens As Expressions.Iexpression = Expr LExprutilities. pressi Tokens_)
54

55 "If that Expr isn't of Type FunctionCallExpr, then something has gone wrong!

55 If Not _ExpriiadeFronFuncCallTokens.GetType() = GetType(Expressions.FunctionCallExpr) Then Throw New DSValidationException("It was detected that at least one argument was present for the FunctionCall, however on Le
57

8 REM Now get the Arguments from that FunctionCalléxpr. That all we need it for

59 He Argunents = CType(_Expr allTokens, Expressions.FunctionCallexpr).SubExpressions

50

& End 1F

52

= LogLexi "...Finished ing a FunctionCall Object to " & Me.TargetFunction Identifier.InSquares() & * with * & Me.Arguments.Count().ToString() & " Arguments”)
64 Catch _Ex As Exception : Throw New DSException("@FunctionCall\ProcessTokensToInitialiseFields: * & _Ex.Message, Ex) : End Try
65 End sub

66

67 B [ny Expressions or Child Instructions executed hereby, are returned in the ExeRes's UpstairsExecutid

68 B [Public Function Execute(Byval InputSymbolTables As Runtime.SymbolT. t) As ExecutionResult Implements IInstruction.Execute ...
82

[Above] Class: FunctionCall

| will only be able to test these three latter terminal IInstruction]-Types, when the four

IStatement|-Classes have been written (at which point, | shall test whole programs).

Statement Instructions

The principal distinction between the terminal- and statement-Instructions is that the Statement-

Instructions contain a Contents member which represents all Instructions between that start of that

Statement, and its corresponding [End{StatementType}| Token.

This is how | implemented the four IStatement] classes:

The Namespace Structure -

(2] DSLibrary
[=d] My Project
|7 Language
[Expressions
|57 Instructions
|57 Staternents
'lﬂ DS.LInstructions. Staternents. DSFunction VB
'lﬂ DS.LInstructions. Staternents. IfStatement VB
18] DS.LInstructions.Statements.LoopStaternent.VB
18] DS.LInstructions.Statements.VB
'lﬂ DS5.LInstructions. Staternents. WhileStatement.VB
1&] DS.LInstructions.FunctionCall.VB
'lﬂ DS.LInstructions.ReturnTeCaller VB
18] DS.LInstructions.VariableAssignment.VB
'lﬂ DS.LInstructions.VariableDeclaration VB
1&] DS.LInstructions.VB

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

1 Imports DocScript.Runtime.BuiltInTPVs
2
3 |-Namespace Language.Instructions.Statements
4
5 B """ «<summary>The Base Interface for all Statement Instructions in DocScript (E.g. Implemented by DSFunction and IfStatement)</summary>
6 [Public Interface IStatement : Inherits IInstruction
7 Property Scopedvariables As Runtime.SymbolTable
8 ReadOnly Property Contents As ObjectModel.ReadOnlyCollection(Of IInstruction)
9 End Interface
18
11 & Public Module StatementUtilities
12
13 [-#Region "Statement Contents Lexing Logic”
14
5 @ [
52
53 B [fhe Lexing Function to construct the contents of a DSFunction, IfStatement, WhileStatement, or LoopS|
54 ¥ [Public Function GetStatementContentsFromTokens(ByVal _StatementContentsTokens As Runtime.Token()) As IInstruction()
142
143 ® [Returns [1] The first possible IStatement which could be constructed, and [2] The Left-over Tokens v
144 @ [Private Function GetSubStatementFromRemainingTokens_(ByRef AllRemainingTokens As Runtime.Token()) As Tuple(Of IStatement, Runtime.Token())
206
207 B [Takes in some Tokens which begin with a Statement, and returns only the Tokens for that Statement.]
21e ® [Private Function GetSubStatementTokens_(ByVal _IStatementType As Type, ByVal AllRemainingTokens As Runtime.Token()) As Runtime.Token()
268
261 | #End Region
262 |
263 B [Recursivly reconstructs the IInstructions as DocScript Source. Keywords all become UPPERCASE, and Ta|
273 [Public Function ReconstructStatementContentsAsSource(ByRef _StatementContents As IInstruction()) As String
296
297 | End Module
298
293 | End Namespace|

[Above] Module: StatementUTtilities

“Namespace Language. Instructions.Statements

tatement_FirstLineEnding TPV) Then Throw Mew DsUnexpectedTokenException("The Statement's First Line should have ended with [)] and [{Lines

3 Re;
4 PubTic Class TiStatenent

& mpeciars o ructiod

20

21 Wheclarstions declared by all Istatementd

35

% 8 [onstructs the Tins 2

v e Sub New(ByRef _Toke Token()) ..o

@

4 Public Sub ProcessTokensToInitialiserields()

a Try : Logt “Bega & an sy

s

“ REN Source should look like:

a5 REM

% RN

a7 REM EndIf

a8

P REM Tokens should look like:

se REM (Keyword], [GrammarChar], [ExprTokens...], [GrammarChar], [LineEnd], [InstructionTokens...], [Keyword], [LineEnd]

51

52 REM Fields to Inftialise:

53 REM ConditionExpr

54 REM Contents_

55

5 REM Ensure that there are encugh tokens to construct the Ilnstruction

57 If He.Tokens_.Count < Runti GetType()) Then Throw New Dsvalidationexception(String.Format("The No. Tokens ({9)) was less than the minisum No. Tokens required to construct the Instruction ({1}).", Me.Ta
8

59 REN Ensure that the last Token is a {LincEnd)

& If Not Runtime.BuiltInTPVs.LineEnd_TPV.IsSatisfiedBy(Me.Tokens_.Last()) Then Throw New DSunexpectedTokensxception(“The Last Token was not a {Lineend)", Me.Tokens_)
61

2 REM Ensure that the penultimate Token is the Statementénd

6 Runtise.BulltInTov: 4_If_TPV. Tokens_(ve. Tokens_.Length - 2)})

64

55 REM Ensure that the main TPV herefor is satisfied

66 Runtise.BultInTPVs X TPV, Tokens_)

&

8 REM On the first line, there should be at least 5 Tokens

69 “If (Expr) {LineEnd}

7 Dim _Statement_Firstline As Runtime.Token() = Me.Tokens_.UpToAndIncluding(AddressOf Runtime.BuiltInTPVs.LineEnd_TPV.IsSatisfiedBy)
n If Not (_Statement_Firstiine.length >= 5) Then Throw New DvalidationException("The first line of the Statement was not syntactically-valld, because it didn't contain enough Tokens®, Me.Tokens_.GetvaluesandLocationsstring())
72

7 Ren Ensure that the First Line ends a5 we expect it to.

7 If Not _Statement_FirstLine.TakeBlockFromend(_(

7

76 REN We now know that there is at least 1 Token for the ConditionExpr

7 /Skip() the Keyword aad Openiogfunctionbracket, then Take all Tokens upto the [) {LineEnd)]..

”» P _Statenent_Firstiine. skip(2). ToArray() €350 Runtime.8uiltInTeVs.C
7

80 REM We now need to get the (If) Contents and the ElseContents

81 Dis _Contents_And_ElseContents As Tuple(OF Runtime.Token(), Runtime.Token()) = GetContentsandelseContents_(Me.Tokens_)

82

8 Me.Contents_ = [StatementUtilities] (_Contents_And_ Ttem1).Tolist()

84

85 If _Contents_And_ElseContents.Iten2 Isliot Nothing Then _

86 e, _ - [lities] _Contents_nd_ Item2). Tolist()

&7

& LogL “...Finished i Sbfect Wfth <8 M. Cantinta Coimt. Jostring() A *ichiM Trstrickions)?)
8 Catch _Ex As Exception : Throw New nump»mr elds: " & _t _Ex) : End Try

32 €nd Sub

1

2 ® here ian' an Flse Clause in the Tokens, then [

2 § ected Shared function GetContentsAndtlseConte A5 Tuplo(OF Runtime.Token(), Runtime.Token())

[Above] Class: IfStatement

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

1 ENamespace Language.Instructions.Statements
2

3 @ [Represents E.g. [While (True) Endihile]]

4 B Public Class Whil : Inpl Language. T i .IStatement

H

6 M[eclarations specific te this IInstruction|
1
12 ®eclarations declared by all I: |
25
26 B [Constructs the IInstruction from its Tokens|
27 ® [Sub New(ByRef Tokens As Runtime.Token())
E)
31 e Public sub ProcessTokensToInitialiserields()
32 Try : LoglexingMessage("Began constructing a WhileStatement...")
33
3a REM Source should look like:
35 REM while (Expr...)
36 REM e
37 REM Enduhile
ES
39 REM Tokens should look like:
a0 REM [Keyword], [GrammarChar], [ExprTokens. [GrammarChar], [LineEnd], [InstructionTokens. [Keyword], [LineEnd]
n
42 REM Fields to Initialise:
a3 REM ConditionExpr
aa REM Comtents_
45
a6 REM Ensure that there are enough tokens to construct the IInstruction
a7 If Me.Tokens_.Count < Runtime.MinimumRequiredTokens(Me.GetType()) Then Throw New DSvalidationException(String.Format("The No. Tokens ({8}) was less than the minimum No. Tokens required to construct the Ins
a8
49 REM Ensure that the last Token is a {LineEnd}

50 If Not Runtime.BuiltInTPUs.LlineEnd_TPV.IsSatisfiedBy(Me.Tokens_.Last()) Then Throw New DSUnexpectedTokenException("The Last Token was not a {LineEnd}”, Me.Tokens_)
51

52 REM Ensure that the penultimate Token is the Statementend

53 Runtime.BuiltInTPVs.StatementEnd_wWhile_TPV.EnsurelsSatisfiedBy({Me.Tokens_(Me.Tokens_.Length - 2)})

54

55 REM Ensure that the main TPV herefor is satisfied

s6 Runtime.BuiltInTPVs.uhilestatement_UpToIncOpensracket_TPV.Ensurelssatisfiedsy(re. Tokens_)

57

58 REM On the first line, there should be at least 5 Tokens

59 “while (Expr) {LineEnd}

60 Dim _Statement_Firstiine As Runtime.Token() = Me.Tokens_.UpToAndIncluding(AddressOf Runtime.BuiltInTPVs.Linegnd_TPV.Issatisfiedsy)
61 If Not (_Statement_FirstLine.length >= 5) Then Throw New DSValidationException(*The first line of the Statement was not syntactically-valid, because it didn't contain enough Tokens”, Me.Tokens_.GetValuesAn
62

63 REM Ensure that the First Line ends as we expect it to

60 If Not _statement_FirstLine.TakeBlockFromend(_Count:=2).SatisfiesTPV(Runtine.BuiltInTPVs.Statement_FirstLinegnding_TPV) Then Throw New DsUnexpectedTokenException("The Statement's First Line should have end
65

66 REM We now know that there is at least 1 Token for the ConditionExpr

87 *skip() the Keyword and OpeningFunctionBracket, then Take all Tokens upto the [) {LineEnd}]..

68 Me.ConditionExpr = Expressiens.ConstructExpressionFromTokens(_Statement_FirstLine.Skip(2). ToArray() UpToButExcludinglast(AddressOf Runtime.BuiltInTPVs.ClosingFunctionBracket_TPV.IsSatisfiedsy))
69

70 REM Now get the Contents of the Statement; Skip() the first line, then it's all Tokens up to the very last StatementEnd

7 Me.Contents_ = [StatementUtilities].GetStatementContentsFromTokens(Me.Tokens_.Skip(_Statement_Firstline.Llength).ToArray().UpToButExcludinglast(AddressOf Runtime.BuiltInTPVs.StatementEnd_while TPV.IsSatisfi
72

73 LoglexingMessage("...Finished constructing a WhileStatement Object with " & Me.Contents.Count.ToString() & " Child Instruction(s)")
74 Catch _Ex As Exception : Throw New "@ihi. ToInitialiseFields: " & _Ex.Message, _Ex) : End Try

75 End Sub

76

77 ® [any Expressions or Child Instructions executed hereby, are returned in the ExeRes's UpstairsExecutic

75 B [PubTic Function execute(Byval InputsymbolTables As Runtime.SymbolTabl) As ExccutionResult Implements IInstruction.Execute .
195
19 B [Returns an XML Representation of the Instruction, with all Propities and Child Structres included|
197 B [Public Function GetProgramTreeNodeXML() As System.Xml.lLing.XElement Implements LInstruction.GetProgramlrecNodeXML ...
212
213 ® [Returns what the Instruction would have looked like in the Source, without an extra LineBreak on the
214 @ [Public overrides Function ToString() As String

1 - hamespace Language.Instructions.Statenents

2

3 ® Fepresents F.g. [Fomction BIt;DataTypeRgt; Tdentifier (Argament

45 Public Class Dsrunction : Isplements Language.Instructlons.Stateaents.Istatessnt, Runtise.symbolTable. IsynbolTablevelus

6 ®peclarations specific to this Tinstructiod

96

97 ci#Region "Declarations declared by all Istatesents”

as

Protected Readonly Tokens_ As Ruatime.Token()
Public Property Scopedvarisbles 4 Runtime.SymbolTohle Inplements IStatesent.Scapedvarisbles

struction()
rts As System.Collections.Objectiodel. ReadonlyCollection (07 T

Protected contents_ As
Public Readonly Property Conte:

Struction) Implements [Statement.Contents

#End Region

n from its Toke

ructs the Tinstruct

(ByRef _Tokens A Runtime_Token

Public Sub ProcessTokensToInitialiserields()
Try : LoglexingHessage("Began constructing a DSFunctian...

REM Source should look like:
REM Function <Voids Main () {LineEnd]) ... EndFunction (LineEnd}
REM Function <Nusber> Main (<Stringd> CLAs, <Nusber> Age) {LineEnd} ... EndFunction {LineEnd}

REM Tokens should look like:
REM [Keyword], [GrammarChar], [DataType], [GrammarChar], [Identifier], [Grammarchar], [Grammarchar], [LineEnd]
REM [Keyword], [Gramsarchar], [DataType], [Gramsarchar], [Identifier], [Grammarchar], ([Grammarchar], [DataType], [Grammarchar], [Identifier])... [LineEnd]

REM Fields to Initialise:

REM Identifier
REM ReturnType
REM Parameters
REM Comtents_

REM Ensure That there are enough tokens to construct the IInstruction

If Pe.Tokens_.Count < Runtime.MinimunRequiredTokens(He.GetType()) Then Throw New DSValldation Pe. Token

ception(String.Format("The No. Tokens ({8)) was less than the minimum No. Tokens required to construct the Instruetion ({1}}.

AEM Ensure that the last Token iz 3 {LineEnd}
If Not Runtime.BuiltInTPVs.LineEnd_TPV.IsSatistiedBy(Me.Tokens_.Last()) Then Throw New DsUnexpectedTokenException("The Last Token was not a {LineEnd}", Me.Tokens_)

s e =m mg penultimate Token is the StatementEnd
Builtl 1_Function_TPV. {Me. Tokens_(Me. Takens_.Length - 2)})

R Ensure that the maln TPV herefor 1s satisfled
Runtise.BultInTPYS. DSFunct ion_UpTaIneTd TPV Tokens_)

REM We now know that we have [Function <Strings Gethame]
REM S0 set these Fields...

REM On the first line, there should be at lesst 8 Tokens
*Function < humber » Main () {LineEnd}

Dim _Statement_Firstline As Runtime.Token() = Me.Tokens_.UpTeAndIncluding(Addressof Runtime.8uiltInTPVs.LineEnd TPV, IsSatisfiedly) "UpTo the first (Linetnd)

If ot (_Statenent_Firstiine.Length >= B) Then Throw Mew DSValidationtxception('The first line of the Statement was not syntactically-valld, because it didn’t contain enough Tokens®, Me.Tokens_.GetvaluesndLocationsstring())

REM Ensure that the First Line ends as we expect it to
If Not _Stwtement_firstLine. Takeblockfromend(_Count:=2).SatisfiesTPu(Runtine. builtin rys. Statement_FirstLinetnding_TPV) Then Throw Mew DSUnexpectediokentxception(”The Statement’s First Line should have ended with [}] and [{LineEnd)

REM The DataType should be Token(2)

157 Me.ReturnType = Variskles.GetDSVarishleType FromDataTypeString(He. Tokens_(2).Value)
158

159 REM The Identifier should be Token(s)

168 Me.Identifier = Me.Tokens_(4).Value

[Above] Class: DSFunction

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

#Regior

Jamespace Language. Instructions. Statements

nplements Langusge. Instructions . Statements. [Statement

Publlie CountExpr As Language.Expressions.TExpression

stnd Aegion

sfiedy(Me. Tokens_)

Dim _ ntf e As Runtime.Token() = Me.Tokens
If Wot (_statement_Firstiine.Length >= 5) Then Throw he

_-UpToAndIncluding(Address0f Runtime.BuiltInTPVs.Lineknd TPV, IsSatisfieddy)
w 05validaticntxception("The first line of the Statement was not syntacticall

inegnd], [InstructionTokens...], [Keyword], [LineEnd]

nEnception(String. Format("The No. Tokens ({8}) wes less than the minimum No. Tokens required to construct the Instruction ({1}).", Me.Toker

eption("The Last Token was not a {LineEnd)”, Me.Tekens_)

y-valid, because it didn't contain enough Tokens”, Me.Tokens_GetvaluesandLocationsString())

Pus.Statement _FirstLinefnding TPW) Then Throw Mew DiUnexpectedTokenException("The Statement’s First Line should have ended with [)] snd [{LineEnd]

REM Naw get
Me.Contents_

nt; Skip() the First lin
tstatenentContentsFronToks

g 2 Object with * B Me.Contents.Cour
prion("@Loopstatement\ProcessTokensTolnitialiser ields:

Gatch _Ex As Exception @
End Sub

& ExcRes's Up

nt. Tastring() <
"B _Ex.vessage, Ex) @ end Try

Runt s Closk o)
very last Statementfnd
rstiine. Length) . Toarray() . UpToButexcludingls Runtine. {_Loop_TPY. T)).ToList()
& " Child Instruction(s)™)

[Above] Class: LoopStatement

With the 8 different linstruction-implementing Classes written, | ought to be able to construct a
Program (Instruction) Tree, from some raw source:

Prototype: This point marks a milestone in the product, which is now capable of...

Using a set of DocScript Tokens (piped in from the Parser) to construct a Program object. This is

how that's implemented in the DocScript.Experimentation| project:

-
a5l ProgramConstruction

[ESREEE)

DocScript Source:

#TestProgram.D5
<String> Name : "Ben" & " ™ & "Mullan"
<Number{@> Ages

Function <Void> Main ()

EndFunction
| Program Construction |
- | Instruction Trees |

DSE Form
| Expression Experiment |
| Parser Experiments |

i <STRING=> Name : "Ben" &" " & "Mullan”

L <NUMBER@: Ages (Unsssigned)

E- Functions
¥ E|NCTION <VOID: Main {0 Parameters) (D Instructions)

| salExperiments |
| BF Eperimens |

Construct Program |

R 0L | SubStaFromRemain |

<Program:
<GlobalVarDecs:
<Vanable Declaration DataType="STRING" |dentifier="Mame">
<Assignment Bxpr>
<CperatorBxpr OperatorChar="4amp;">
<OperatorExpr OperatorChar="8amp;">

</OperatorExpr=

<LiteralExpr Literal Type="STRING" Literal\alue=""Bendquat.” /> —
<LiteralExpr Literal Type="STRING" LiteralValue="&quoct; ":" /> Splitwh BalencedFilterin

<l iteral Expr Literal Type="STRING" LiteralValue="8quot;Mullan&guot;" /= - < |sSatisfiedBy() Qlj

= [Lvertssion | [returfif]
H Repeat(Of T| TabbedinBy |

GetSubStatementTokens |

eref)

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

e Identifying the pSFunction]s and Global-ariableDeclaration]s of the Program.
e Ensuring that there is exactly one EntryPoint Function (Main) in the DocScript Program.

Line Count

40000

Progress Check ==
30000

At this point in the development, izggg
| have written 36990 Lines of 15000
code... 10000

5000

0

05/06/2022 05/07/2022 05/08,/2022 05/09/2022 05/10/2022

Testing Table: Does this component function in accordance with the stipulated criteria?
| will now test the Prototype Lexing System against criteria from the §Design, and some new criteria.

Does the Lexing System operate reliably, speedily, and consistently?

Have all edge-cases been accounted-for?

A hierarchical Instruction Tree (Program Tree) is produced from Yes; see previous screenshots
a linear stream of Tokens.

The Lexer can correctly identify where one statement ends and Yes; see previous screenshots
another one ends.

Where Statements are nested, the lexer unambiguously Yes;
determines which tokens correspond to which statement
openings and closings.

View XML...

| GlobalVarDecs

- DSFunctions

For instance, this source...
If (True)|
If (False)|
'ﬁ EndFunction -8 @ Corterts)
I-F (= F alse)l 1@ [fStatement] IF (- False)
@ {f Corterts)
EndI'Fl @ [fStatement] IF (- True)

EndI'Fl @ (f Corterts)
If (-True)]

Eel (There are four If-Statements
:ClEndI) there)
...ought to produce 4 [IfStatement]s, in the structure of one

parent containing two children, and one grandchild.

5+ [DSFunclion] FUNCTION AVOIDS Main
5@ [WStatement] F (True)
- (F Conterts)
0 Wamemen] I Faie)

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

Execution
The third of the three stages of interpretation is Execution, wherein the constructed

Object

is executed.

IInstruction.Execute()
The first set of methods to work on, are the implementations of [Execute (ByVall

LInputSymelsState As DocScript.Runtime.SymbolTablesSnapshot) As ExecutionResultL

They look like this:

79

81
82
83

85
86
87
88
89
9@
91
92
93

95
96
97
98
99
160

1@3

123

125

E

B "' <summary>Any Expressions or Child Instructions executed hereby, are returned in the ExeRes's UpstairsExecutionResults member.</summary>
El public Function Execute(ByVal _InputSymbolTables As Runtime.SymbolTablessnapshot) As ExecutionResult Implements ITnstruction.Execute
Try : Dim _ExeRes As ExecutionResult = ExecutionResult.New_AndStartExecutionTimer("VariableDeclaration " & Me.Identifier.InBrackets())
LogExecutiontessage (" (VariableDeclaration: Received * & InputSymbolTables.TnnerSymbolTables Count.ToString() & " Trput Symbal Tables)")
Dim _Modified_SymTbls As Runtime.SymbolTablessnapshot = _InputSymbolTables
REM VariableDeclaration Execution Process:
" - Resolve() Me.AssignmentExpr if this isn't Nothing
' - Coerce() this resolved Expr into Me.DataType
' - Add a new SymTbl Entry with [the Resolved Me.AssignmentExpr], or [My DataType's IDV's Nullvalue]
"4 ONLY Initialised, *if* Me.AssignmentExpr Ishot Nothing
Dim _Resolved_AssignmentExpr As Variables.IDataValue = Nothing
If Me.AssignmentExpr IsNot Nothing Then
‘Resolve()
Dim _AssignmentExpr_Resolution_ExeRes As Executionfesult = _
Me.AssignmentExpr.Resolve(_Modified SymThbls)
‘Add as an Upstairs ExeRes
_ExeRes.UpstairsExecutionResults.Add(New Tuple(Of String, ExecutionResult)(“AssignmentExpr”, _AssignmentExpr_Resolution_ExeRes))
‘Update my SymbolTables
_Modified SymTbls = _AssignmentExpr Resolution_ExeRes.ResultantSymbolTablesState
'Extract the Resolved Expr
_Resolved_AssignmentExpr = _AssignmentExpr_Resolution_ExeRes.ReturnStatus.IExpression_ResclutionResult
‘Coerce() the Resclved Expr intc Me.DataType (i.e. The <Number> or <String@> that was typed in the Source)
LogExecutionMessage("VariableDeclaration for * & Me.Identifier.InSquares() & ": Declared DataType is " & Me.DataType.Fulllame.InSquares() & ", and Resolve
_Resolved_AssignmentExpr = Variables.CoerceIDV_IntoTargetIDVType NoGenericModifier(Resolved_AssignmentExpr, Me.DataType)
End If
REM Procure a SymbolTableEntry(Of TheCorrectType)
REM In the GetSymbolTableEntry FromIDataValue Function, if the _InputIDV Is Nothing, then an InstanceWillNullValue IDV will be used for Me.DataType:
Dim _GeneratedSymTblEntry As Runtime.SymbolTzble.ISymbolTablet _
Runtime.SymbolTable.GetSymbolTableEntry_FromIDataValue(_InputIDV:= Resolved_AssignmentExpr, _NullValueType_IfInputIDVIsNothing:=te.DataType)
REM Add an Entry into the Topmost SymbolTable, for Me.Identifier
_Modified_SymTbls.AddEntryTeToTopmost(Me.Identifier, _GeneratedSymTblEntry)
Return _ExeRes.5topExecutionTimer_AndFinaliseObject(Modified_SymTbls)
Catch Ex As Exception : Throw New DSException("@ariableDeclaration\Execute: " & _Ex.Message, Ex) : End Try
End Function
't <susmary>Any Expressions or Child Instructions executed hereby, are returned in the ExeRes's UpstairsExecutionResults member.</summary>
Public Function Execute(Byval _InputSymbolTables As Runtime.SymbolTablessnapshot) As ExecutionResult Implements IInstruction.Execute
Try : Dim _ExeRes As ExecutionResult = ExecutionResult.New_AndStartExecutionTimer("VariableAssignment ™ & Me.TargetVariable_Identifier.Ingrackets())
LogExecutionMessage(” (VariableAssignment: Received " & _InputSymbolTables.InnerSymbolTables_Count.Tostring() & " Input Symbol Tables)")
Dim _Modified_SymTbls As Runtime.SymbolTablessnapshot = _InputSymbolTables
REM VarisbleAssignment Execution Process:
' - Ensure that there exists an entry with Me.TargetVariable Identifier in the _InputSymbolTables
' - Resolve() Me.AssignmentExpr, to [the current IDV Type of the SymTblEntry with Me.TargetVariable Tdentifier]
' - Update it's Value to [the Resolved Me.AssignmentExpr]
If Not _Modified SymTbls.IsContainedInAny(Me.TargetVariable Identifier) Then Throw New DSNonexistentSymbolException(Me.TargetVariable Identifier, "The VariableAssignment can therefore not occur”)
"Resolve() the AssignmentExpr
Dim _AssignmentExpr_Resolution_ExeRes As ExecutionResult = Me.AssignmentExpr.Resolve(_Modified SymTbls)
'Add as an Upstairs ExeRes
_ExeRes. UpstairsExecutionResults. Add(New Tuple(OF String, ExecuticnResult)("AssignmentExpr”, _AssignmentExpr_Resclution_ExeRes))
'Update my SymbolTables
_Modified SynThls = _AssignmentExpr_Resolution_ExeRes.ResultantSymbolTablesState
"Extract the Resolved Expr
Dim _Resolved_AssignmentExpr As Variables.IDataValue = _AssignmentExpr_Resolution ExeRes.ReturnStatus.IExpression_ResolutionResult
"Coerce() the _Resolved_AssignmentExpr into [the current IDV Type of the SynThlEntry with Me.TargetVariable_Identifier]
Dim _CurrentSymTblEntry_IDVType As Type = Runtime.SymbolTable.ExtractVariablevalue_FromsymbolTableentry(_Modified_SymTbls.GetEntryFromany(Me.TargetVariable_Identifier)).GetType()
LogExecutionMessage("Variableassignment for " & Me.Targetvariable_Identifier.InSquares() & ": Current SymbolTable Entry is of type " & _CurrentSymTblEntry_TDVType.Fulllame.InSquares() & ", and Resolve
_Resolved_AssignmentExpr = Variables.CoercelDV_IntoTargetIDVType NoGenericModifier(Resclved AssignmentExpr, _CurrentSymTblEntry IDVType)
"Update the symTbl Entry
_Modified SynTbls.UpdateEntryIniny(Me.TargetVariable Identifier, CType(Resolved AssignmentExpr, Runtime.SymbolTsble.ISymbolTablevalue))
Return _ExeRes.StopExecutionTimer_AndFinaliseObject(Modified_SymTbls)
Catch _Ex As Exception : Throw New DSException(“@ariableDeclaration\Execute: ™ & _Ex.Message, _Ex) : End Try
End Function

[Above] Method: VariableAssignment.Execute()

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

53

@ W
RN 4

&

" <summary>Any Expressions or Child Instructions executed hereby, are returned in the ExeRes’s UpstairsExecutionResults member.</summary>
Public Function Execute(ByVal _InputSymbolTables As Runtime.SymbolTablesSnapshot) As ExecutionResult Implements ITnstruction.Execute
Try : Dim _ExeRes As ExecutionResult

ExecutionResult.New_AndStartExecutionTimer("ReturnToCaller”)

LogExecutionMessage(” (ReturnToCaller: Received " & _InputSymbolTables.InnerSymbolTables_Count.TeString() & " Input Symbel Tables)")
Dim _Modified_SymTbls As Runtime.SynbolTablessnapshot = _InputSymbolTables

REM ReturnToCaller Execution Process:

- Raise the CurrentDSFunction_ReturnHasOccured flag

- If Me.ReturnValueExpr IsNot Nothing, them CurrentDSFunction_ReturnValue = Me.ReturnValueExpr.Resolve()
_ExeRes.ReturnStatus.CurrentDSFunction_ReturnHasOccurred = True

If (Me.ReturnValueExpr Ishot Nothing) Then

"Resolve()
Dim _ReturnValueExpr_Resolution ExeRes As ExecutionResult = ReturnValueExpr.Resolve(_Modified_SymTbls)

'Add as an Upstairs ExeRes
_ExeRes.UpstairsExecutionResults.Add(New Tuple(Of String, ExecutionResult)(”ReturnValueExpr”, ReturnValueExpr Resolution ExeRes))

*Update my SymbolTables
_Modified_SymTbls = _ReturnValueExpr_Resolution_ExeRes.ResultantSymbolTablesState

75 'Extract the Resolved Expr
76 _ExeRes.ReturnStatus.CurrentDSFunction ReturnValue = _ReturnValueExpr_Reselution_ExeRes.ReturnStatus.[IExpression ReselutionResult]
77 LogExecutionMessage("ReturnToCaller: Return Value Expr has type " & _ExeRes.ReturnStatus.CurrentDSFunction Returnvalue.GetType().Fulllame.InSquares())
78
79 End If
80
81 Return _ExeRes.StopExecutionTimer AndFinaliseObject(_Modified_SymThls)
82 Catch _Ex As Exception : Throw New DSException(“@ariableDeclaration\Execute: " & _Ex.Message, _Ex) : End Try
83 End Function
[Above] Method: ReturnToCaller.Execute()
67 ' <summaryrAny Expressions or Child Instructions executed hereby, are returned in the ExeRes's UpstairsExecutionResults member.</summary>
68 Public Function Execute(ByWal _InputSymbolTables As Runtime.SymbolTsblesSnapshot) As ExecutionResult Implements ITnstruction.Execute
69
78 REM Differences between a FunctionCall and a FunctionCallExpr
71 ’ - FunctionCallExpr's Target Function MUST have a non-void ReturnType
72 ' - FuncticonCallExpr's Target Function MUST produce & ReturnValue
73
4 Return FunctionCall.CallFunctionByName (
75 _InputSymbolTables:= InputSymbolTables,
76 _TargetFunction_Identifier:=Me.TargetFunction_Identifier,
77 _UnresolvedArguments:=Me.Arguments,
78 _MustProduceReturnValue:=False
79)
88
81 End Function|

[Above] Method: FunctionCall.Execute()

The last of these methods, in [FunctionCall, piggy-backs off of the

ICallFunctionByName ()] Method (sounds oddly Win32-like, dosen't it), which provides the following

advantages:

e The same code dosen't have to be re-written for FunctionCallExpr
e The methods don't have to care about the difference between calling a
DSFunction, and a Built-in Function; this is all handled by |CallFunctionByName()].

60000

h k 50000

Progress Check | =
30000

At this point in the development, 20000
| have written 50996 Lines of 10000

code...

Line Count

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

[Expression.Resolve()

The IExpression-implementing classes do not have a method, because they are not
really Instructions which can be executed on their own. In DocScript, it is not valid to have an
Expression sitting by itself on a line. It must be a component of an Instruction, such as a
VariableAssignment or FunctionCall.

Therefore, the method is used instead. It still returns an ExecutionResult;
Resolve(Byval InputSymbolTables As Runtime.SymbolTablesSnapshot) As|
[Instructions.ExecutionResult|. | implemented the Resolve() methods thusly:

5 [Public Function Resolve(ByVal _InputSymbolTables As Runtime.SymbolTablesSnapshot) As Instructions.ExecutionResult Implements IExpression.Resolve

REM LiteralExpr Resolution Process
We have the Literalvalue already stored as an IDataValue; return [it wrapped in an ExeRes].

Try
"To be returned from this Resolve() call
"There are no _ModifiedSymTbls because we do not need to touch them at all...
Dim _ExeRes As Language.Instructions.ExccutionResult = Instructions.ExecutionResult.New AndStartExecutionTimer("Literalexpr (0F * & Variables.VariableUtilitics.GetDataTypeString FromDsvar

LogExecutiontessage(” (LiteralExpr: Received " & _InputSymbolTables.InnerSymbolTables_Count.ToString() & " Input Symbol Tables)")

_ExeRes.ReturnStatus. IExpression_ResolutionResult = Me.literalValue
Return _ExeRes.StopExecutionTimer_AndFinaliseObject(_InputSymbolTables)

Catch _Ex As Exception : Throw New DSException(“LiteralExpr (OF " & Variables.VariableUtilitics.GetDataTypeString_FromDSVariableType(GetType(TLiteral)) & "): " & _Ex.Message, _Ex) : End Try

172 | End Function|

[Above] Method: LiteralExpr.Resolve()

261 B Public Function Resolve(ByVal _InputSymbolTables As Runtime.SymbolTablesSnapshot) As Instructions.ExecutionResult Implements IExpression.Resolve
282
2e3 REM VariableExpr Resolution Process
204 ' Identify the SymTblEntry with Me.Identifier in the _InputSymTbls
2085 ' Ensure that this Entry is for a Variable (instead of a Function)
206 ' Extract the IDV from the Entry, and Return this
207
208 Try
209 *To be returned from this Resolve() call
210 ‘There are no _MedifiedSymTbls because we are only *reading* thence
211 Dim _ExeRes As Language.Instructions.ExecutionResult = Instructions.ExecutionResult.New_AndStartExecutionTimer("VariableExpr” & Me.Identifier.InBrackets())
212
213 LogExecutionMessage(” (VariableExpr: Received ” & _InputSymbolTables.InnerSymbolTables_Count.Tostring() & * Input Symbol Tables)™)
214
215 *Ensure that the SymbolTables contain an Entry for the target Variable
216 If Not _InputSymbolTables.IsContainedInAny(Me.Identifier) Then Throw New DSNonexistentSymbolException(Me.Identifier, "The VariableExpr can therefere not be resolved”)
217 Dim _Targetvariable_SymTblEntry As Runtime.SymbolTable.ISymbolTableEntry = _InputSymbolTables.GetEn dentifier)
218 If Not Runtime.SymbolTable.IsVariableEntry(_TargetVariable_SymTblEntry) Then Throw New DSTncorrectSymbolTablef, ypeException(Me.Identifier, "An IDatavalue Variable Type".InSquares
s
220 _ExeRes.Returnstatus.IExpression_ResolutionResult = Runtime.SymbolTable.ExtractVariablevalue_fromsymbelTableEntry(_TargetVariable_symTblEntry, Me.Identifier)
221
222 Return _ExeRes.StopExecutionTimer_AndFinaliseGbject(_InputSymbolTables)
223 Catch _Ex As Exception : Throw New DSException("@FunctionCallExpr " & Me.Identifier.InBrackets() & ": " & _Ex.Message, _Ex) : End Try
224
225 End Function|
[Above] Method: VariableExpr.Resolve()
266 [Public Function Resolve(ByVal _InputSymbolTables As Runtime.SymbclTablesSnapshot) As
267
268 REM Differences between a FunctionCall and a FunctionCallExpr
269 ' - FunctionCallExpr's Target Function MUST hawve a non-void ReturnType
278 ' - FunctionCallExpr's Target Function MUST produce a ReturnValue
271
272 Return Instructions.FuncticnCall.CallFunctiocnByName
273 _InputSymbolTables:= InputSymbolTables,
274 _TargetFunction_Identifier:=Me.Identifier,
275 _UnresolvedArguments:=Me.SubExpressions,
276 _MustProduceReturnValue:=True
277)
278
279 End Function

[Above] Method: FunctionCallExpr.Resolve()

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

Public Function Resolve(ByVal InputSymbolTables As Runtime.SymbmllablesSospehot) As Instructions.Executionfesult Inplements IExpress

REN

Return _Exere
Caten _Ex As Exces

Dacscript Operatorfxpr Resalution Process
The Constructor has alresdy checked that our (ReadOnly) OperstorChar exists in the DSOperators Dictisasry

Resolve() First Dperand (To an Toatavalve)
Resolue() Second Operond (To on I0ataValue) (Only if BineryOperator)

Find my DSOperator in the DSOperators Dictionary
ancn Operand (from an [Expression to an Iatovalue)
Pass in the cne|two T0ataValues we have For Operands

Return the Result, wropped in an IDatavelus

“To be returned from this Resolvel) call
Dim _Exeies As Language. Instructions. Executionfes

t = Instructions. Executionfesult New_f ("Dpe sOperatory” & Me.OperatorChar & “)7c)

“Far the returning _ExeRes
LogExecutiontiessage(” (OperatorExpe: Nz(e'uzd "2 lnnulSynbulhlﬂ!s InnerSymbolTables_Count. ToString() & ~ Input Symbol Tables)")
Din poaifiedSynTbls As Ruatime.Sysbollabl - tSymbolTables

Dim DperaticnResult As Variables. IDota

“Get the DSOperator at our OperstorChar
Din _Target_DSOperstor & Language.Expressions.Operstors.DSoperator = DocSeript.Langunge. Expressions. Operators. 0S0perators, Iten(He OperatorCnar)

1f Operstors, IsBinsryOperstor (e OperatarChar) Then

Dim _Dperation As Operators.5inaryDperat ator).Operation

BinaryDperation = CType(_Target_DsOperator, Operators.Binaryt

REM _PodifiedsynTols = [OperandOne Resolva()] + MoaiflecsynTols

Dim _Dperandine_Resolublon_Exehes ks Tnstruckions. Executionfiesult = He.Subbxpressions(8).Resalue(HodiiedSynTols)

_ExeRes. UpstairsExecutionkesults Acd(New Tuple(0F String, Instructions)(“Operand [0)", _OperandOne_Reselution Exehes))
_WodifiedSynTuls = _DperandOne_Resolution_ExeRes.Resultantsy

walTablesState

REM _HodifiedSynTuls = [OperandTua_Resolve()] = ModifiedsynTols
Dim _DperandTuo_Resslution ExeRles As Instructions.Executiondesult = Me.
_ExeRes.UpstairsExecutionResults.Add(em Tuple(OF String, Instruction
Hocks edSymTots ~ _OperandTuo, Resolut on_ExeRes ResultantSymoal TabTesttate

smxmmmsu: mmz(ﬂbnlfiaﬂiy-rbls!
[1)", _DperandTu_Resalution ExeRes))

LogEnecutiontlessage(~Executing Cperation for DSOperator® & Me.OperatorCher.ToString().InSquares() & “with Resolved Dperands * & _UperandOne_Resolution_ExeRes AsturnStstus.lExpression_Resolutionflesult.ToString(). InSquares() & * =nd =

_Operandlus_Resolutic

REM Mo SynTuls are pased in here; the Operands are ALREADY RESOLVED, and OperatorDelegates never nesd to sccess the SymolTable (they're just simple actions like * or 8)
_CperationResult = Operation. Invoke(
_Operandone =_OperancDne_Resolution ExeRs Tespression 5
_OperandTua;=_CperandTuc_Resolution ExeRe IEnpression |
Elsel# Operators.IsUnaryOperatar (He.OperatorChar) Then
Dim _Operation As Operators.UnaryOperator,UnaryDperation = CType(_Target_DSOperator, Operators.UnaryOgerator),Operation
REM _poaifledsynTols + [OperandOne Resolve()] < Moaif
bin _Dperandone Resalutlon.Euefies 42 Instructions. bxecutiontesult = He.SubEaoressions(8). Resalue(ogiflesSymlls)
_Exces. UpstairsExecutionkesults. Acd(New Tuple(OF String, Instructions. Execut)(“Operand [0)", _OperandOne_Reselution Exehes))
_VodifiedsynTuls = _DperandOne_Resolution_ExeRes.ResultantSymbalTablesState
LogEnecutiontlessage(~Executing Operation for DSOperator® & Me.OperatorChar.ToString().InSquares() & “with Resolved Dperand * & OperandOne_Resolution Exeh IExpression | TaString() . InSquares())

REN Mo SynTbls are pased in here; the Ooerands are ALRADY HESOLVED, wid Operatorllelegates never need to access the SymolTasle (they're just sis
_BperationResult = _Dperation. Invoke(_Operand:=_OperandOne_fesaluticn_Exef ression_f

Else : Throw lew DSValidstionExc
End 1%

otion("The Operator wes not recognised ss a valid Unary or Binsry Operator”, “CperstorChar: * & Me.OperstarChar)

Exet IExpression_f i

Ject(ywTols)
Erception("0SDperstors” B Me.OperstorChar & " © & _Ex.Message, {Me. TaString(), Lf(Me.

n 3 Throm Mew DSOperat Length < 2, “{No Second Operand)”, Me.SubExpressions(1).Testring())}, _Ex) i End Try

Faa Fuarrian

[Above] Method: OperatorExpr.Resolve()

Program.Run()
Finally — with all the components inside a DocScript having had their

Resolve()], and Run ()| methods implemented — | can now write the function that actually runs an

entire DocScript Program.

In essence, all it needs to do is to Execute each of the Global |\/ariab1eDeclaration|s, and then
mthe Main (EntryPoint) Function...

109
158
191
192
193
190

* Executes the DacScript EntryPoint Function Main(), passing in any CLAs, and returning the ExitCode if there is one
(Otheruise, DocScript.Runtime.C: rogramExitCode Default is returned os the ExitCode)
This datus is wrspped up Lnside the ExecuticoResul

Piblic Function Run(byal _ComandiineArgunents$(}) As L executiontesu

LogExecutiontessage(String. Format ("Began Program Execution with {8} Functions, (1} GlobalvarDecs, and on ExecutionContext of {2}...%, Me.Functions.Count.ToString(), Me.GlobalVarDecs.Count.ToString(), Me.ExecutionContext.ToString()), Lo

Rew
new | BocScript Execution Process |
=

REM 1) Initislizstion
. - If the ExeCxt is Wothing, then this Program instance shouldn't Run{)
- Generate the GlobalsymbolTable

ogram Funcrions to the GlobalsymbolTable

REM 2) Imvocation
- Execute() each Glooalvarec
Run() DSFunction Main (lacated in the
¢ 4t is the Signature with the CLAz,
- Pass in _CommandLinedrgusentss()
- Ensure that a Returnvalue s produced
update the Glebalsymbaliable, to include any Modifications from during execution
- Return this Program’s ExitCode, wrapped in an ExeRes

osalsymbalTable)

men [*] 4[]

It 4 Initialisation 4 PLILLILLELEILAND

REM 11NN
REW 1111111

If (Me.ExecutionContext Is Nothing) Then Throw New DSTnvalidCallException("A [Progran] cannot be Run() when its [ExecutionCantext] is [Mothing]”, "Prograw\Run()")

[snitiskise the Enecationfsalt for the Progran

Din _ExeRes As Language. Instructions. orfesult = Language. Instructions. ¢ New_AndStartExecutionTiner("Progran”
ve.lobalsymbalTabla = Progra. a.n.rmmbmmn.n.m Sxscutioncontext) s Al will 26d the Execurioncontont: s suiltaneincelons o <re syl

Gin Podified Systols A Runtine. napzhot = M. A ngusthi;

mas Nothing")

SymbolTables:]

Add Program Functions to the GlobalsybolTable
Por Each _PSFunctlon A Language-Tnstructlons. Statasents. DSFuncticn In He.Functions

LogExrcutionessage("adding D5 unction Stunceian.Sgeneitier.Snsquares() 8 * o Global Symbelrasic”)

_Modified_SynTuls. AddentryToTaTopmost(werction: e fiars o SymbolTab bolTablefntry (Of Language. Instructions. Statements. DSFunction) (_DSFunction))
Hext

Aen 11
SR 114 Imocestion 4 NI

AEH Should any [E1Fs], [Global vsrishles], or [DSFunceions] have non-unique identifisrs,
REM & DSDuplicatesymbolTableentry will sutcmatically be Thrown by the SysbolTable(s)

?xreulr[] swch Globaluaroec
Far Eac! as .Verish

Log
LogExecutiontiessage(“Executing Global VarisbleDeclaraticn for * & _GlobalVarDec.Identifier.InSquares() & * on Glabal SymbolTable”)

[Above] Method: Program.Run() — Part 1

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

jarDec_ExeRes As Language.Instructions,Executionfesult = _GlobalVarDec.Execute(_Modified_SynTbls)
fonResults.Add(New Tuple(Of String, Language.Instructions.ExecuticoResult)("6lobal VarisbleDeclarstion * & _GlobslvarDec.Identifier. Infrackets(), _GlobalVarDec_Exses))

_Glcbalvarfec_ExeRes.ResultantSymbolTablesState

SFuncticn) Program i _oSFunceion, i)-Count() = 1 _
ion Main. The walid signstures arei ° & {Progrs.ValidEntryPointFunction Signature Unadorned, Progras.ValidEntryRoiotFunction Signature OSIntercp}.GetStandardAs

unction))() _

etion. Effectivesignature. Tostring(), Logfvent.Dituentieverity. Infomation)

279 _unadorned) Then
288

2 ure_0SInterap) Then

284 ‘guments. GetStandardarraySerlalisation() & *...")

285 d later on...)

288 eArgunents Select New Language.Varisbles.DSString(_CLA)).ToArray())})

rom ¢ String In _CommandLis
", _MainFunction. Effectivesignature. Testring())

Lp1e(0F String, Langusge.Instructions. fuccutionfesult)("EntryPeint (Main) Function”, _Mainfunction fxefes))

Results. Add (Hew

)

_ExeR iner_s i Fodified SysTols)
Logexecutionessage(String.Format("...Progran Exited with Code (8], _ExeRes.ReturnStatus.Program_ExitCode.Tostring()), Logivent.DSEventseverity, Infonation)
Retuen _ExeRes

Catch _Ex As Exception : Throw New DSException("@rogram\Run: * & Ex.Message, Ex) : End Try

End Function

[Above] Method: Program.Run() — Part 2

Prototype: This point marks a milestone in the product, which is how capable of...

e Executing a Program Obiject (piped in from the lexing system), including executing each Global-
\VariableDeclaration| and then the Main.

e Creating a Global at the beginning of execution, and passing the stack of symbol
tables to each statement in the tree of the program, as it is executed.

o Distinguishing between s defined in the DocScript Program, and [BuiltInFunction]s,
defined by DocScript Runtime. This is the Experimentation Form | used to test the BIFs:

Input("Enter your Name:™) I

LambdaBIF Identifier | ExeRes Is Nothing

e
DocSeript: Input

Enter your Name:

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

Progress Recap: Where am | in the development plan? [Review]

e Done: | have just written the DocScript Library DLL, which contains the logic required to interpret
DocScript [Prograns.

e Next: | willimplement this DLL into the first of three implementations, as was described in detail
within §Design. This first DocScript Interpreter implementation is a command-line one.

[Stage 2]
Command-line Interpreter (DSCLI.EXE) Development

This is getting very exciting! | am nearly able to run the first ever DocScript Program.
Before the logic in the DLL can be used to do this, however, | must in fact implement

the logic into something that uses it.

Analogically speaking, what | have just made is like a cassette tape. Now — in
order to enjoy the must on the tape — | must create the boombox that plays it.

Writing the CLA-Manager
To make the process of understanding command-line input to the DSCLI program significantly easier,
| shall develop a quick command-line argument Manager. It can be found in the

PocScript.Utilities|namespace.

It takes in a Key in the syntax: |/Key| or |/Key:Value|or |[/Key: "Value"|. The constructor to a

CLAManager then takes in a series of CLA Data, which each correspond to a given (case-insensitive)
Key, and map this key to an Action, to be run if the Key is specified...

Structure and Modulatory: This Implementation is modular and multi-purpose, because...

e The DSCLI binary (an .exe file) can perform different actions depending on the command-line
arguments specified. With , it performs all three stages of interpretation, whereas with

|/ GetProgramTreel, only the first two (parsing and lexing) occur.

e This means that program fits in well with operating system interoperability systems, such as
command-line piping in Win32. The program's output can be passed through different
subsequent programs, and this output can differ depending on the CLAs to DSCLI.exe.

e For example, running the command DSCLI /Run /SourceFile:"HelloWorld.DS" | clip)
provides different functionality from the DSCLI program, than in the command
" HelloWorld.DS" /LogToConsole | more.com|(.com is an old Win32

l/SourceFile:

executable format left over from MS-DOS, before .exe became standard.)

e This is convenient because a wide variety of functionality is provided from a singular executable,
which is more portable and manageable than having many different .exe files to all perform
slightly different tasks.

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

The Surprisingly-simple Implementation

1 -Mamespace Utilities

2

35

s et of CLAData to act on any specified Command-Line Arguments, and to display a CLA Help Dictionary if the argusent /2 is specified
s Runs the relevant CLADatums’ Actions-If-specified, as soon as the CLaManager is constructed.

6 ' ¢fsummary>

75 Partial public Class CLaManager

s

9 Public Const CLAKeyStartChar As Char = “/"c 'E.g. /Showlog

10 Public Const CLAValueStartChar As Char =

1 Public Const HelpCLAS - CLAKeyStartchar & “3°c

12

13 public ReadOnly ProvidedCLAs As ObjectModel.Resdonlycollection(Of [String])

1 Public Readonly OutputDelegate s Action(of [string])

15 Public ReadOnly CLAData As ObjectModel ction(Of CLADatum)

16 Public ReadOnly CLAHelpDictionary Description As [String]

17 Public ReadOnly CLAHelpDictionary_Examples As [String]()

1

1 g *** <summary>Indicates that the Help Dictionary will have the Linebreaks and padding-whitespace automatically inserted¢/summary>

28 Public UseCommandLineFormatting ForHelpDictionary As Boolean = True

7

2w Tndicates weathe s handl ad of processing CLAData Help Blctl is

2 Public ReadOnly WelpDictionaryWasDisplayed As Boolean = False

2

= @ Konstructs o Command-Line Argument Hana 11 manageent of the CLAs occours as soon as the object

58 = Public Sub New(ByVal CLAs As String(), Byval CLAHelpDictionary Description$, ByVal _CLAHelpDictionary Examples$(), ByVal _OutputDelegate As Action{0f String), ByVal _UseCommandLineFormatting ForHelpDictionary 4s Baolean,
51 Ty

52

53 REM Ensure all Keys are Unique

54 If Mot _CLAData.Select(Of String)(Function(_CLADatum As CLADatum) _CLADatum.Key.ToUpper()).ToArray().AllElementsAreUnique() Then Throw New Exception(“The CLAData Keys were not all Unique.”)
56 Me.OutputDelegate = _OutputDelegate

57 Me.ProvidedCLas = Mew ObjectModel .Reado: tion(OF String){_CLAs.ToList())

58 Me.CLaData = New ObjectHodel. ReaddnlyCo n(0f CLADatum)(_CLAData.ToList())

50 Me.CLAHelpDictionary Description = _CLAMelpDictionary Description : Me.CLAHelpDictionary_Examples = _CLAHelpDictionary_Examples
60 Me.UseConmandL ineFornatting_ForHelpDictionary - UseCommandLineFormatting ForkelpDictionary
61
&2 IF me.ProvidedcLas. Contains(HelpcLa) Then
63 Me.DisplayHelpbictionary() : Me.HelpDictionaryWasDisplayed = True
52 Else
65 Me.ExecutenctionsForspecifisdCLas() ‘Ensures mandatory keys are specified, and executes the relevant [ActionIfSpecified]s
66 End I
68 Cateh _Ex As Excep When True : Throw New DSException(“Command-Line Argument Manager: " & _Ex.Message, _Ex) : End Try
0 End sub

70

nE Public Shared Function CLAsContainsKey(ByVal CLAS3(), Byval KeyS) As Boolean

- Protected Sub ExecuteActlonsForSpecifledCLAs()

BEM Writes the CLA Help Dictionary to the OutputDelegate 1f the /2 CLA is specified
+ Protected Sub DisplayHelpDictionary() ...

End Class

End Mamespace

The meat of the CLA-Interpreter comes down to these simple few lines:

Dim _Program As New DocScript.Runtime.Program(
_Tokens:=DocScript.Runtime.Parser.GetTokensFromSource(_RawSource:=EntryPoint.SourceToInterpret),
_ExecutionContext:=EntryPoint.ExeCxt_TolUse

)

_ExitCode = Program
.Run(EntryPoint.DocScriptCLAs) _
.ReturnStatus.Program_ExitCode _
.GetValueOrDefault(defaultValue:=DocScript.Runtime.Constants.ProgramExitCode_Default)

{That}, is how easy it becomes to run a DocScript Program, because of all the heavy-lifting being
abstracted into the DLL.

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

Using the Interpreter
Here are some examples of DSCLI in use...

C:\Windows>DSCLI /?
Description:

DocScript Command-Line Interpreter. Interprets DocScript Source Files.

Examples:

DSCLI.EXE /Liwve

DSCLI.EXE /Liwe /LogToFile:"DSLive.DSLog" /ProcessDebugEvents /GUI

DSCLI.EXE /Run /SourceString:"Function <Void> Main ();Output(Hello, World!");EndFunction™

DSCLI.EXE /Run fSourceFile:"X:\Programming\DocScript\HelloWorld.DS™ /LoglToConsole

DSCLI.EXE /GetProgramTree /SourceString:"Function <VWoid» Main ();Output(®Hello, World!");EndFunction™
DSCLI.EXE /Run /SourceString:"Function<Void>Main();System Beep();EndFunction™

DSCLI.EXE /Run fSourceFile:"BI02017.DS™ /DocScriptCLAs:"GRBBRB™ /LogToFile:BIO.DSLog

Argument Usage: (Keys are case-insensitive)

/GetProgramlree

JSourceFile:<Value>»

/SourceString: <VWalue>

/DocScriptCLAs: <Value>

/LogToConsole

fLogToFile:<Value>

/ProcessDebugEvents
JGUI

/PromptBeforeExit

C:\Windows>DSCLI /Run /SourceFile:"D:\Benedict\Documents\SchoolWork\Projects\DocScript\DocScriptPrograms\Hellolorld.DS™

Hello, World!

C:\Windows>DSCLI.EXE fRun fSourceString:"Function <Void> Main ();Output(Hello, World!");EndFunction” /GUI

(Optional) [Action] Enters a DocScript Live Sessio

n: a DS» prompt appears and accepts Statement-leve

1 Instructions

(Optional) [Action] Interprets the DocScript Sourc

e (specified by either /SourceFile or /SourceStrin

g). This process then returns the ExitCode of the

DocScript Program.

(Optional) [Action] Parses and Lexes the DocScript
Source (specified by either /SourceFile or /Sourc

eString), and writes the resultant XML Program tre

e to the Console Output Stream

(Optional) [Datum] Specifies the Source via a DocS

cript Source File

(Optional) [Datum] Specifies the Source wia a DocS

cript Source String. Use ; for NewlLine and = for 5

tringlLiteralStartEndChar.

(Optional) [Datum] Specifies Command-Line Argument

s for the DocScript Program

(Optional) [Flag] Writes Events from the DocScript
Log to the Console Output Stream during Interpret

ation

(Optional) [Flag+Datum] Writes Events from the Doc

Script Log to the specified Text File during Inter

pretation

(Optional) [Flag] Processes and shows Debugging Me

ssages in the Log (if the Log is shown)

(Optional) [Flag] Indicates that the GUI Execution

Context will be used instead of the CLI one
(Optional) [Flag] Shows "Press [Enter] to continue
..." before exiting the DSCLI Process

'
DocScript: Output u

@ Hello, World!

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

C:h\Windows>DSCLI.exe fLive

DocScript Live Interpreter Session

Only use Statement-Contents Instructions (no Functions)
Exit with !Exit (or Ctrl + C), cls with !Clear

Use ? to Resolve an Expression e.g. 214 + 33

Use ; for Newline

DS> <Number>» Age : 181 2
DS» 2Age

5

D5» !Exit

[Above] Prototype 1 of DSCLI's /Live Mode

Debugging
Before behaved as it should, and produced the above screenshots, there
were a number of bugs which | had to correct:

Incorrect Program XML Serialisation
When using the |/GetProgramTree| CLA, | noticed that the XML tree was not correctly formed; notice

how the <VariableDeclaration>|is not within the [<GlobalvarDecs>| Node...

WinNT>DSCLI.EXE /GetProgramlree (SourceString:"<5tring> Name”
<Program>

<VariableDeclaration Datalype="STRING" Identifier="Name":>

<hssignmentExpr />

</MariableDeclaration:

<GlobalVarDecs />

<Functions />
< /Program>

To mend this, | simply needed to add the GlobalVarDec nodes to |<GlobalVarDecs/>|, instead of

347 @ " <summary>Gets the XML form of the DocScript Program, including all Global Variable Declarations, and F
348 ﬁ Public ReadOnly Property ProgramTreeXML() As XElement

349 _:I_| Get

358 Try

351

352 Dim _XElementToReturn As XElement = <Program/>

353

354 Dim _GlobalvarDecsXElement As XElement = <GlobalVarDecs/>

355 For Each _GlobalvarDec As Language.Instructions.variableDeclaration In Me.GlobalvarDecs
356 _GlobalvarDecsXElement.Add(_GlobalvarDec.GetProgramTresNodeXML())

357 Next

358 _XElementToReturn.Add(_GlobalvarDecsXElement)

359

36 Dim _FunctionsXElement As XElement = <Functions/>

361 For Each _DSFunction As Language.Instructions.Statements.DSFunction In Me.Functions

362 _FunctionsXElement.Add{_DSFunction.GetProgramTreeNodeXML())

363 Next

364 _XElementToReturn.Add(_FunctionsXElement)

365

366 Return _XElementToReturn

367

368 Catch _Ex As Exception : Throw New DSException("@ProgramTreeXML: " & _Ex.Message, _Ex) : End Try
369 End Get

376 | End Property

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

Console closing immediately

When creating an .Ink file to the DSCLI.exe binary, with a set of command-line arguments to run a

* DS file, it was annoying that the console window would close, before | (and therefore any future

user of the application) would have a chance to see what the output from DSCLI — and thereby also

the DocScript Program — actually was.

To fix this, | have added a |/PromptBeforeExit] CLA switch (flag). This causes the interpreter to wait

for the press of the [Enter] key, before exiting and therefore dismissing the Console window:

[* EINC 0 |

b.Z80 K 163b4 K 1 INE .. bYZ LAPOGEM HISS\WHILLUNMMHIUEIO0 SOMWare s | |ray.exe

I Muiet.
¥PEEXE
0 ShareX.

= R OUTL
@ chror
ﬂwwwij
= oo devenv.
[0S0}
57 Intel

B C\Windows\dscli.exe

4

1 3

3 DSCLIexe
 AnrtFr ave

13:
190K BRIAK 1The

s

14RR " Arrtex sxa”

As can be thence seen, this requests the keypress, 4 even if there is an Exception 1.

Prototype: This point marks a milestone in the product, which is now capable of...

e Parsing and understanding a series of Command-Line Arguments to the DSCLI binary, and
performing one of several different actions, depending on the CLA. For example:
C:\Windows\system32>D5CLI /Run /SourceFile:H.DS /GULI /LogToConsoleg

e Executing, or generating the XML-Program-Tree for, a DocScript Program — including requesting
Input and providing Output, via a Win32 Console.
e Displaying clear error messages, resulting from Exceptions raised during the Interpretation

process. For instance:

C:\Windows\system32>DSCLT /Run /SourceString: "H"
Exception: (Logged) @Program\GetFunctionsAndGlobalVarDecsFromTokens

(Logged) [DSUnexpectedTokenException] Unexpected Token at Top Statement (Program) Level. Only Variable Declarations and Functions can exist here.. The culprit Token was
Column="1" 1"].

[Value="H", Type="Identifier", LocationInSource="[Line="1",

Line Count

Progress Check

At this point in the development,
| have written 68031 Lines of
code... 0

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

[terative Testing
Within §Analysis, | listed a number of types of test, along with example testing data, which | could
use to test the product once implemented. | shall now make use of this testing plan...

Assert-style Test M Passed?

Input and Output: Erroneous DocScript source Yes; see previous screenshots
can be taken in, but the interpreter determines

that there is something wrong, instead of

continuing and crashing.

Input and Output: Standalone Expressions can Yes; see previous screenshots

be taken in in the PDSCLI /Livel mode, and are

evaluated using the current Symbol Tables.

Usability: A high degree of verbosity is presentin = No; having conducted this test, | realise that it would
the error messages, leading to an unambiguous be nice to see a StackTrace in addition to the
prognosis of whence the error came. Exception Message. Therefore, | shall change from
using [Exception.Messagel, to
[Exception.ToString ()], which includes the
StakTrace, like this:
28/02/2023 8:51:47 (Morning) Runtime Exc
eption: System.MNullReferencebxception: T
he Object was [Mothing]. An /OutputFile
must be specified for /Single mode.
at MullNet.CompilerExtentions.ObjectE
xtentions.MustNotBeNothing] TObject](TO
bject& Object, String MsgIfNull) in D:
“Benedict\DocumentshProgrammingiMullNet?,
MullMetUtilities\Metaltilities\MN.Compil
erExtentions.VB:line 47
at Mulllet.SilentControlToolset.SaveS
creenshot_Main(String[] CLAs)

(The strings on the bottom represent the

call stack, and its functions)

All of the "Standalone Expressions" and Yes; see previous screenshots
"Command-Line Arguments" from the Testing
section of §Design, can be run successfully.

Justifications for Actions Taken: By printing the entire stake trace, it is significantly easier to see
exactly where the problem occurred in the code, and what state the Win32 Process was in when the

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

Exception was Thrown. Here is an example of a more widescreen StackTrace:

— |

B C)\Users\Ben.MNDel\DSCLLexe =NRCN X

Exception: (Logged? EProgram~GetFunctionsAndGloballarDecsFromTokens
(Logged) BEDSFunction“~ProcessTokensTolnitializeFields
(Logged?> BGetStatementContentzFromTokens

(Logged) [DSUnexpectedlokenException] An Inner—Statement Token Line was not recogn
[Raw
"s{Numberl@»Zeckendorf Representation

GetZeckendorf Representationt(6BB@3{LineEnd>}", WithLocations

{0z <RI[15.21>1, [R[15.31>1, [Y"Moumbher@" <R[15.4121. C(R[15,.111>1,. ["Zeck

" {B[15,.381>1. ["GetZeckendorfRepresentation" (RL[15. 48131, [(RI[15.67121, [“6800
Fress [Enterl] to continue...

[Stage 3]
Windows IDE (DSIDE.EXE) Development

Progress Recap: Where am | in the development plan? [Review]

e Done: | have now written the first Interpreter Implementation, PSCLI.EXE]. Initial testing has also
been performed on it.
o Next: | willimplement this DLL into the second of the three implementations, as was described in
detail within §Design. This implementation is a graphical Windows Program.
WPF and XAML
BN The moderately complex design requirements of the Windows IDE mean that | am

best off using WPF instead of Windows Forms for this exe. This requires creating the
markup for the User-Interface in an almost HTML-like derivative of XML, called XAML
("Zamol").

DS

IDE

This is an overview of the |, Main Window's XAML {, ...

1 El<ribbon:RibbonWindow
x:Class="MainWindow" xmlns="http://schemas.microsoft.com/winfx/20@6/xaml/presentation”

woha

4 wx:Name="RibbonWindow" Title="DocScript IDE" Icon="/DSIDE;component/DSIDE.ico"
5 Width="888" Height="688" Background="LightGray"
6 WindowState="Normal" WindowStartuplocation="CenterScreen” WindowStyle="SingleBorderWindow"
7 >
a8
9 = <Grid x:Mame="LayoutRoot" ShowGridLines="False" AllowDrop="True">
16
11 [<GPid.RowDefinitions[:]>
16
17 <!-- The Ribbon -->
18 = <ribbon:Ribbon| x:Name="TheRibbon" Grid.Row="0"...>
283
204 <!-- The Source TextBox -->
205 [<avalonEdit:TextEditor| xmlns:avalonEdit="http://icsharpcode.net/sharpdevelop/avalonedit” Grid.Row="1"..
228
229 ¢!-- The StatusBar -->
230 ® <Border| Grid.Row="2" BorderThickness="@ 1 @ @" BorderBrush="#FF575757"...]>
275
276 </Grid>
277

278 | </ribbon:Ribboniindow)|

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

¥mlns:x="http://schemas.microsoft.com/winfx/2886/xaml” xmlns:ribbon="clr-namespace:Microsoft.Windows.Controls.F

>

...Which produces { this |, component:

[=, DocScript IDE (Ben on \WMNLTO1) L =HREY g1
g Home ViewPlus Program Debug

3 New l I suCut 9§ L—I—' F BZoomIn

=2 Open... BECopy @ + 82 Zoom Out

Save - Insert Code

L&l Save As... st Snippet.. = £ Full Sereen

1 #HelloWorld.DS -

2 Function <Void> Main ()

3 Input("Press [Enter] to play the audio...")

4 System_PlayWav("D:\Benedict\Documents\Programming\Exports\SFD.wav")

5 Output("Played; Exiting")

6 EndFunction

L »

Status: Idle | 6 Line(s) | Line: 6, Col: 12 | Zoom: 120% | Opened File (PlayWav.DS)

Keyboard Shortcuts
To aid in the usability of the application, | have added the following Keyboard Shortcuts:

Public Sub HandleShortcutKey(ByVal _Sender As Object, ByVal _KeyEventArgs As KeyEventArgs) Handles Me.KeyDown

If (Keyboard.Modifiers = Modifierkeys.Control) AndAlsc (_KeyEventArgs.Key = Key.FS) Then : MsgDebug("Ctrl+Fs") 'Ctrl + FS
ElseIf (Keyboard.Modifiers = ModifierkKeys.Control) AndAlsc (_KeyEventArgs.Key = Key.N) Then : Me.StartNewFile() 'Ctrl + N

ElseIf (Keyboard.Modifiers = Modifierkeys.Control) AndAlsc (_KeyEventArgs.Key = Key.0) Then : Me.OpenFile() ‘Ctrl + 0

ElseIf (Keyboard.Modifiers = ModifierKeys.Control) AndAlso (_KeyEventArgs.Key = Key.S) Then : Me.SaveFile() 'ctrl + 5

ElseIf (Keyboard.Modifiers = (ModifierKeys.Control Or Modifierkeys.Shift)) AndAlso (_KeyEventArgs.Key = Key.S) Then : Me.SaveFileAs()
ElseIf _KeyEwventArgs.Key = Key.F1 Then : Me.ParseCurrentSource() 'F1

ElseIf _KeyEwventArgs.Key = Key.F2 Then : Me.LexCachedTokens() 'F2

ElseIf _KeyEwventArgs.Key = Key.F3 Then : Me.ExecuteCachedProgram() 'F3

ElseIf _KeyEventArgs.Key = Key.F5 Then : Me.RunCurrentSource() 'F5

Else : Return 'Don't set the Handled as below...
End If

_KeyEventArgs.Handled = True 'Don't type the Keys into Me.SourceTextEditor

End SUH

| have also added s to the Buttons which have corresponding Keyboard-Shortcuts, like so:

g Home ViewP|

3 New ot

2 Open... B

.|

E]

r
3
o’ 2

& The ToolTip label clearly shows the shortcut-key

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

Implementing the DocScript DLL

The code-behind for the [Run (F5)] Button looks like this:

558 E#Region "Interpretation Actions"

559 |

568 % """ <summary>Calls the ParseCurrentSource(), LexCachedTokens(), and ExecuteCachedProgram() Methods</summary:
561 [Public Sub RunCurrentSource() Handles RunButton.Click

562

563 Dim _RawSourceTextd = Me.SourceTextEditor.Text

564 Dim _CLAsS&() = Me.ProgramCLAsTextBox.Text.Split(" "c)

563

566 'Excepticns hence 4 are MsgBoxed out

567 Me.StartBackgroundworker("Interpreting...”,

568 sub()

569

57@ : Me.InvokeIfRequired(Sub() Me.Statuslabel.Text = "Status: Parsing...")

571 Me.Cached_Tokens = DocScript.Runtime.Parser.GetTokensFromSource(_RawSourceText$)

572

573 ¢ Me.InvokeIfRequired(Sub() Me.Statuslabel.Text = "Status: Lexing...™)

574 Me.Cached_Program = New DocScript.Runtime.Program{Me.Cached_Tokens, Me.CurrentExecutionContext)
575

576 t Me.InvokeIfRequired(Sub() Me.Statuslabel.Text = "Status: Ewecuting...”)

577 Me.Cached_ProgramExeRes = Me.Cached_Program.Run(_CLAs)

578 ¢ Me.InvokeIfRequired(Sub() Me.LastPerformedAction_InfoText.Text = "Program finished in " & Me.Cached_Prog
579

588 End Sub

581)

582

583 | End Sub

Notably, this is done in a separate, background Thread. This means that the user-interface remains
responsive throughout interpretation (and a number of other operations). In addition, the operation
can be cancelled at any time, by means of the [Cancel] Button, which appears only during a

Background Operation:

Status: Executing... s Cancel | 4 Line(z) | Line: 4, Col: 12 | Foom: 100% | Progral

o

A

| Cancel the current BackgroundWerker Operation... i

Standalone Expression Resolution Utility (DSExpr.EXE)
| also wrote the DSExpr executable to accompany the IDE:

101}

i Program Debug

Script Lo .
i X

zbug Events
) Launch | Runin
ox logging psgypr... DS-CLL.

T ails

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

20
21
22
23
24
25
26
27
28
29
30

It does not call Program.Run ()], but rather, [IExpression.Resolve()]:

'Any Exceptions Thrown hence are caught downstairs by the Object which instanciated the Form

Dim _GlobalSymbolTable InSnapshot As Mew DocScript.Runtime.SymbolTablesSnapshot(
_BottomStack:=Runtime.SymbolTablesSnapshot.Empty,
_Topmost :=DocScript.Runtime.Program.GenerateGlobalSymbolTable(Runtime.ExecutionContext.GUIDefault)

)

Me.ExprResultlLabel.Text = Me.Expression _
.Resolve(_GlobalSymbolTable_InSnapshot) _
.ReturnStatus.IExpression_ResolutionResult _
.ToString()

It is a simple Windows Forms program, and the Main Window looks like this:

P

o

" DocSeript Standalone Expression Resolution Utility = B ||
[Besolve] [Generate Exprlree]
1
Expr:
Status: Idle FH
1F Ll
Using the Interpreter
Here are some examples of DSIDE in-use...
(...After the implementation of AvalonEdit as described below...)
LT01)
[Program Debug
w9 Tl £ Parse (F1) BZoomIn
opy L‘* } Construct (F2 ﬁZOQm Out
Insert Code Run | _
aste Snippet... ¥ (F5) = ﬁFuII Screen
Ec .. = SampleProgram: Hello-World b
SampleProgram: Beep-Sleep-Repeat
EntryPoint: Unadorned
EntryPoint: OS-Interop
@ Loop: Condition-Controlled
@ Loop: Count-Controlled (While)
@ Loop: Count-Controlled (Loop)
,)) F
q Loop: Array-Tteration Y
@ 1r-Ee-Statement 4
Status: Opening File... | | Cancel |1

| | 1 Lines} | Line: 1, Col: 1 | Zoom: 120% | Opened File (PlayWav.DS)

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

r‘_.
% DocScript IDE (Ben on \WMNLTO1) =B %
Home ViewPlus Program Debug
3 New l I wCut 1 -i—- [b = Parse (F1) ﬁZDom In
Open... L |z Copy # T % Construct (F2) };P Zoom Out
Save - Insert Code Run .
Wl save As.. | Paste Snippet... ~ (F5) % Execute (F3) 3 Full Screen
File Edit Interpretation View
1 #PrimesBelowl@@.DS -
#Run wi e.g. .exe un /SourceFile:"PrimesBelow .
2 #R th DSCLI /R /S File:"P Belowl@@.DS"
3
4 Function <Void> Main ()
i utpu rimes below : onst_Cr etPrimesBelow
5 Output(™P bel 100:" & C t_CrLf & GetP Bel 186
6 EndFunction
7
‘Function umber etPrimesBelow umber umber rimes
8F t <Numb > GetP Bel <Number> _NumberOfP
9

10; #A prime number is: a whole number [greater than 1] whose only factors are [1 and itse=

11: <Numberfd> (eddmdadDud

12 DocScript: Qutput g

13 <Number> _T

14 <Number> _C Primes below 100:

151 while (Mat {2,3,5,7,11, 13,17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 1))

i 83, 89,97

16 If (Is 89,973

17 _Co , _CurrentIteration)

- Fratt o

19: _Curren L o

26 EndwWhile

21!

22! Return _CollectedPrimes

235

24 EndFunction

25

26 Function <Boolean> IsAPrime (<Number> _Test)

27 -
< | n 8
Status: Executing.. b) Cancel |38 Line(s) | Line: 1, Col: 1 | Zoom: 130% | Opened File (PrimesBelow100.05)

[Above] DSIDE running a mathematical program to compute Primes!
(ioomm e — I 5 B & [T

View XML... Home ViewPlus Program Debug

5 v Progrem = Y i Command-ine Arguments:

| GebaaDncn B s | WE250
= DShundion | 'wvnﬁw—l} fmwu o :
 dbiothedink apider oo 4/#Run using e.g. DSCLI.exe /Run /SourceFile:"BIO_2023_Q1.DS" /DocScriptCLAs:10@ .
1 _Sonray_A(CUs. 0 i
3 _CUI0 8 OS_Mumberray_S yer | 6
S tipmdinalialisl 7 Function <Number> Main (<String@> _CLAs)
e 2 8
1 - S 9 #Output(GetNthFib(DS_StringArray_At(_CLAs, ©))) E
) NessbleDsckumon} SRARERE> ZockendofFpmoopceaton 10 #Output(GenerateNFibs(DS_StringArray_At(_CLAs, 8)))
- WhisSiuemar] WHLE (- _LskToFaprasert -) 11 #0utput(GetLargestFittingFib(DS_StringArray_At(_CLAs, ©)))
1 _LargeatFongFo 12 #ComputelargestSingleZeckendorfer()
o 05_Husbechray_) " 13 #Return ~1 it
° v ¥ - 14
) [RetumToCatler] RETURN ZockendodRepresertatn Al 1s <Number@> fRepr ntation : GetZeck fRep! ion(DS_StringArray_At(_CLAs,
8) J | 16 Output(Const_CrLf() & DS_NumberArray_Serialise(ZeckendorfRepresentation, " "))
15 [Ftatement] F (MaxPossbleVaive « 1) 17 Return @
e 18
) [RetumToCater] RETURN 1 19 EndFunction
1 FoSeqmce 20
| Varisbe Deciarston] <NUMBER> _CuertFiTemindex - 1 21
Q) Ve Stotemert] WHLE (T} e A
5@ ¥Sitert] F Mt Greser TS _Numberfeay AL FbSequence, Curertib Teminder),_MatPossbie Vel 234E.g. Takes in 100 and outputs {89, 8, 3}
5.8 0G 24 Function <Number@> GetZeckendorfRepresentation (<Number> _NumberToRepresent)
) FetumToCater] RETURN DS_Numberfway_A{ FbSequence. CurentibTemsindex - 1) 25 i "
° e T 2 A sy 26 #Reduced by each just-added FibTerm
o :ﬁ, = = - R A 2; <Number> _LeftToRepresent : _NumberToRepresent
t R e s IR, 29 <Number@> ZeckendorfRepresentation
i 2 | ze
N e von L hn T 31 #As long as there's still a left-over amount of the origional _NumberToRepresent...
‘Nmmkmm‘m' 32 While (~[_LeftToRepresent = 9])
=@ s_Lees| eraton. mw 33
80 RS/ ivo . Fie ot 03 HRbR - AIASECIE MR Chsriaeitiel 34 <Number> _LargestFittingFib : GetlLargestFittingFib(_LeftToRepresent)
5 Nentioeagrmmert] Camcthasiin :_Ciethanion + 35 ZeckendorfRepresentation : DS_NumberArray_Append(ZeckendorfRepresentation, _LargestFi
*) [RetumToCaler] RETURN _FbsToRatum 36
£4-5: [DSFuncson] FUNCTION <NUMBER> GethhFb (NUMBER> N 37 _LeftToRepresent : _LeftToRepresent - _LargestFittingFib
& @ (Satomart] F (N=1) 38
55 @ (¥ Corterts) 39 Endwhile
*y [RetumToCater] RETURN 1 40
| IansbleDoctaraton] <NUMBER> A: 1 41 Return ZeckendorfRepresentation -
1 VatableDectarason] <NUMBER> 82 <[m »
1 VanableDeciaraton] NUMBERE> GeneratedSofar - [l sestustcke 1| 176 Line(s) | Line:3, Col 1 | Zoom: 160% | Program finished in 27734ms with ExtCode 0

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

% DocSaript IDE (Ben on \\MNLTOZ)

== ViewPlus | Prognm Debug

ome.
‘) Zoom: (5) Skew: (576) Rotate: -5.83)
Reset

Al

149 R
150 Function <Void> ComputelargestSingleZecker
151}

152 <Number> _FinalValue ¥
153} <Number> _CurrentIteration T 100¢
154
1554 wWhile (Maths GreaterThan(_ CurrentIter
156 —
157" If (DS_NumberArray_length(GetZeck _
ACO: Nuidrrnud (Nl Aaneanct+ ClnalA TAarl,Aane

o\ n \ »

0 Linefe) | Line: 1, Cok 1| Zoom: S00%

[Above] The DSIDE ViewPlus Features

Debugging
@ Before behaved as it should, and produced the above screenshots, there were

a number of bugs which | had to correct:

Syntax-highlighting Nightmares

Using simply a WPF gave me no end of problems with attempting to highlight certain
selections of the text ("Runs", as they're called) in a specified colour. This was in part because of the
insertion of paragraph breaks instead of line breaks whenever the enter key was pressed, and in part
because the RichTextBox was doing nothing to prevent any form of rich text from being inserted into
the document. Images, COM Objects, and even Adobe Photoshop documents could be pasted-in,
and these would rather severely mess-up the highlighting offsets.

| frequently ended-up with aberrations like this:

#Beep every 2 Seconds

function <void> main ()
system_beep()
ds _sleep(2000)
main()

endfunctind

| was getting quite frustrated and wasn't making progress, so reached the following conclusion:

The purpose of this project wasn't to implement a syntax-highlighting source
editor from scratch; it was to build a Programming Language. | will struggle to
rationalise dedicating so much time and energy to something that isn't meeting

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

the initial goal directly. So: | don't need to reinvent the wheel; I'm just going to

use an open-source extensible RichTextBox Control for WPF, with Syntax-
highlighting, Line Numbers, and indentation folding built-in; AvalonEdit. These
features will better meet the Stakeholder requirements, and save me time! It's a
Win-Win.

This new Text-Editing Control (AvalonEdit's TextEditor) looks like this:

%, DocScript IDE (Ben on WMNLTO1) (=] B s

[|
Home ViewPlus Program Debug

m

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

_". MNew... I I o Cut EF } = Parse ﬁ'lcom In
=2 Open... % Copy + % Construct ﬁ'Zoom Out [}
Save Insert Code Run
18 save As... [ClPaste snippet.. (F5) & Execute £ Full Screen
File Edit Interpretation View

22
23 #E.g. Takes in 188 and outputs {89, &, 3}
24 Function <Number@> GetZeckendorfRepresentation (<Number: _NumberToRepresent)
25
26 #Reduced by each just-added FibTerm
27 <Number> _LeftToRepresent : _NumberToRepresent
28
29 <Number@> ZeckendorfRepresentation

| 3@
Ex #As long as there's still a left-over amount of the origional _MNumberToRepresent...
32 While (-[_LeftToRepresent = @]}
33
34 <Mumber> _LargestFittingFib : GetlargestFittingFib(_LeftToRepresent)
35 ZeckendorfRepresentation : DS_MNumberarray_Append(ZeckendorfRepresentation, _LargestFittingFib)
36

I 37 _LeftToRepresent : _LeftToRepresent - _LargestFittingFib
33
39 EndWhile
48
41 Return ZeckendorfRepresentation
432
43 EndFunction
44
“
Status: Idle | | 0 Line(s) | Line: 1, Cok 1 | Zoom: 100%

The IDE now has Line-Numbers, reliable syntax-highlighting, and even a |, mini-intellisense {,...

File

Edit

1 #HelloWorld.DS
2 Function <Void» Main ()
3 Input("Press [Enter] to play the audio...™)

Interpretation

4 System_FlayNav("D :\Benedict\Documents\Programming\Exports\SFD.wav")

5 Output(
6 EndFunction

’

Status: Idle

—

= VOID

w STRING

= NUMBER

=0 BOOLEAN

SIF

A ELSE

4% WHILE

A Lo0oP

44 RETURN

A4 FUNCTION

‘! Maths_Round

T Maths_GetPi

! Maths_LessThan
e Maths_GreatsrThan
e System_GetTime
N System_Beep

N System_PlayWav

Crctam Pon

E | [BuiltinFunction] Gets the Value of Pi: 3.14159265358979 h

0% | Opened File (PlayWav.D5)

'Illl

| implemented the syntax-highlighting through an XSHD (eXtensible Syntax Highlighting Definition)

file, which looks like this:
H<syntaxDefinition name="DocScriptSyntaxHighlighting" extensions=".ds" zmlns=vhttp://icsharpcode.net/sharpdevelop/syntaxdsfinition/2008">

i0
11
12
i3
5!
15
i6
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
Eis)
44
45
46
47
438
49
50
Eil
52
53
i
55
56
57
58
59
60
61
62
e3

<End>"</End>

F

r </Rule>

- </Reywords>

t </Reywords>

<!-- Colour Definitions (Format: AARRGGBB) —->
<Color name="Comment" foreground="#FF008000" exampleText="#Comment" />
<Color name="StringLiteral" foreground="#FFcc0000" />

<Color name="NumericLiteral" foreground="#FFC55A11" />

<Color name="BooleanLiteral" foreground="#FFBF9000" />

<Color name="Keyword" foreground="#FF0001FD" />

<Color name="DataType" foreground="#FF2D90B2" />

<!-- <Color name="Identifier" foreground="#FF000000" /> —->

<Color name="DSOperator" foreground="#FF6600FF" />

<Color name="GrammarChar" foreground="#FFC55A11" />

<Color name="StatementEnd" foreground="#FF0001FD"

<!=- This is the main ruleset. -->
B <RuleSet ignoreCase="true">

<!-- Comments —->

<l-- String Literals -->
=
<Begin>"</Begin>

<!-- Numeric Literals ——>
(=] <Rule color="NumericLiteral">
(([A-Za-2z0-91{1,10}_\d{1,3}) | (\d{1,10}(\.\d{1,4})?)

<l-- Boolean Literals ——>

B <Keywords color="BooleanLiteral">
<Word>True</Word>
<Word>False</Word>

<!-- Reywords ——>
=] <Keywords fontWeight="bold" color="Keyword">
<Word>Function</Word>
<Word>If</Word>
<Word>Else</Word>
<Word>While</Word>
<Word>Loop</Word>
<Word>Return</Word>

<1-- DataTypes -->

B <Keywords color="DataType">
<Word>String@</Word>
<Word>Number@</Word>
<Word>Boolean@</Word>
<Word>String</Word>
<Word>Number</Word>

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

Null-Program Trees

Before a Program has been constructed during the lexing stage, the [Generate Program Tree] Button
is still visible:

-

&/ DocScript IDE (Ben on \WMMNLTOL)

Home ViewPlus Pr
Generate Explore

Prog rarnl:T}ree... Execution Result..

This means that when the button is clicked, an Exception is Thrown, informing the user that
accessing the Cached-Program Object resulted in a |NullRe'Fer‘enceException|:

-

MullReferenceException ﬁ

’ h On Generating the Program Tree:

The Object was [Mothing]. A Program rust first be created by Parsing
and Lexing

[

Although this is admissible, it would be better to prevent this scenario from occurring, by design. To

this end, | shall alter the DSIDE program to disable the [Generate Program Tree] Button, until a

Program has actually been cached:
-

gy DocScript IDE (Ben on WWMMLTOL]

g Home ViewPlus

& The Button is now disabled.

This is the line that enables the button, after a successful call to Program.New()}:

: Me.InvokeIfRequired(Sub() Me.StatuslLabel.Text = "Status: Lexing...")
Me.Cached _Program =

Hew DocScript.Runtime.Program(Me.Cached_Tokens, Me.CurrentExecutionContext)
Me.InvokeIfRequired(Sub() Me.GenerateProgTreeButton.IsEnabled = True)

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

...0One would expect to infinitely be asked "Enter your Age", and for the _Age to be Dutput()]again.

However, because I've never built a full procedural Programming Language before, | didn't actually
cogently conceptualise that each iteration of a while loop needs to start with a blank SymbolTable.
At the moment, a Statement-local SymbolTable is created at the start of the WhileStatement|'s
Execute()|call. | need to add in a line to reset — as it were — this SymbolTable after each Iteration!

(...This also applies to the LoopStatement)
Embarrassingly, | had to remind myself of whether or not a Variable Declared inside a While

Statement is visible from the expression of the While Loop, in normal Programming languages. To
this end, | wrote a little test in Visual BASIC .NET:

While Loop Variable Scope

| then discovered another problem: In all programming languages I've ever used, each iteration of a
while loop has its own declarative scope, in DocScript called a SymbolTable. This means that when
running the program...

145
lde
147
148
149
150
151
152
153
154

5
155

>

Query 1* +
[»])[m

EH Language|VB Statement(s) = Connection’<Noneb

From this test, | am concluding that the SymbolTable

1

2
3
Pl
5
5
7

‘ '_ImportantVariable' is not declared. It may be inaccessible due to its protection level.

'VB Test herefor

While (_ ImportantVariable
Dim _ImportantVariable As String = "HELLO"
Global.Microsoft.VisualBasic.Interaction.MsgBox("_ImportantVariable:
_ImportantVariable

End While

Okay; now I'm saying definitively that the WhileStatement (or IfStatement)'s local SymbolTable
needs to be reset after the condition is resolved and before the contents are executed.
| implemented these changes accordingly in the DocScript Library DLL.

(p] m

[o R I R e Bt

LoopSymThblsClearing | +

#Loops Declarative Scope bug 06122022
CFunction <Number> Main (<String@> CLAs)

#should declare a brand-new _Age on each iteration

While (True)
<Number> Age
Output ("The

Input ("Enter vyc
_RAge was " & _Age)

EndFunction

" & _ImportantVariable)
"A New Value™

Actually wait; | need to do one more test:

Dim _ImportantVariable As 5tring = "HELLO"

While (_ ImportantVariable
" _ImportantVariable
Global .Microsoft.VisualBasic.Interaction.MsgBox(" ImportantVariable:
_ImportantVariable

End While|

Language | VB Statement(s) | Connection [<None>

"VB Test herefor

" & ImportantVariable)
"A New Value"

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

Prototype: This point marks a milestone in the product, which is how capable of...

Highlighting DocScript source with the XSHD markup | wrote, and performing standard text-

editing tasks including {New, Open, Save, Save-As, Cut, Copy, Paste, Undo, Redo, Find, Zoom-In/-

Out}:

% PrimesBelowl00.05

g Home ViewPlus Program Debug
3 New . Cut % Undo =TI
+ T} b
SONM -~ S S

Insert Code Run

R e G e I =B e

Parse (F1) ﬁZoom In
R HIES ﬁZcom Out
F ﬂ Full Screen

Snippet.. * (F5) &%

3 *
4 Function <Void: Main () conSt—CPLf()l M q
5

[

[

Output("Primes below 180:" & (L NAERIg] & GetPrimesBelow(18@))

EndFunction
7
g Function <Number@> GetPrimesBelow (<Number: _NumberOfPrimes)
9
10 #A prime number is: & whole number [greater than 1] whose only factors are [1 and itself]
11 <Humher@> CollecrtedPrimes T
] L]

Status: Idle | 38 Line(s) | Line: 5, Col: 31 | Zoom: 100% | Opened File (PrimesBelow100.05)

Performing DocScript Program Analysis tasks, such as displaying a Program Tree

r Y
% Program Tree E@g
.

View XML...

i -~

- | [VariableDeclaration] <NUMBER> _Curentlteration : 2
=&y [WhileStatemert] WHILE {Maths_LessThan(_Currerthteration, _terations ToPerform + 1))
E| @ [fStatement] IF {lsAPrime(_Curment teration))
: E| @ (f Contents) b

3 [VariableAssignment] _CollectedPrimes : DS_MumberAmay_Append{_CollectedPrimes, _Cument teration)

m

o &) [VarableAssignment] _Currentteration : _Cumentlteration + 1

%% [RetumToCaller] RETURN _CollectedFrimes %

Bl [DSFunction] FUNCTION <BOOLEAN: IsAPrime (<NUMBER> _Test)

- | [VariableDeclaration] <NUMBER> _| : 2

-

Providing helpful development features, such as DocScript-Intellisense, and the BIF Explorer:

f P
§ BuiltinFunction Explorer @lﬂ

|dertifier | Description | Retum Type | Parameters o
N Maths_Round Rounds the _Input to the nearest Integer <NUMBER> <NUMBER> _Input |=
N Maths_GetPi Gets the Value of Fi: 3.14159265358579 <NUMBER> 1

<BOOLEAN: <NUMBERz _A, <NUMBEF
Determines weather or not _A is greaterthan _B <BOOLEAN: <NUMBER:> _A, <NUMBEH
ﬁSystem_Gefﬂme Retums the cument Time on the System in the format HH:mm:ss <STRING>

“System_GeiHostname Retums the Hostname of the cument Computer <STRING>

N System_GetUsemame Retums the Usemame of the cument Computer <STRING>

mSystem_Beep Sounds a tone through the computer's speaker <VOID=

“System_F‘layWav Plays the _WavFilePath as a Wav File <VOID= <STRING> _WavFilePath

e oo Feeceaecite o Jialo Lo Aun. TR, e a
' i 3

Determines weather or not _A is less than _B

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

e Being able to launch the DSExpr. exe| utility, for easy standalone expression resolution:

il N
DocScript Standalone Expression Hesnlut'lclxg Utilrty l — Lﬂh_J
[Resolve] |Genemte Expriree |
Expr:
Status: Idle

Progress Recap: Where am | in the development plan? [Review]

e Done: | have just written the Windows IDE implementation of DocScript.
o Next: | willimplement this DLL into the third of the three implementations, as was described in
detail within §Design. This is the web-based interpreter system.

[terative Testing

During the §Analysis, | listed a number of types of test, along with example testing data, which |

could use to test the product once implemented. | shall now make use of this testing plan...

Assert-style Test

¥ Passed?

Input and Output: Erroneous DocScript source
can be taken in, but the interpreter determines
that there is something wrong, instead of
continuing and crashing.

Input and Output: Standalone Expressions can

be taken in in the utility, and are

evaluated using the current Symbol Tables.

Usability: Common tasks can be performed
quickly via Keyboard shortcuts, and it is clear to
discover which keyboard shortcuts are available
in the product.

Yes; see previous screenshots

Yes; see previous screenshots

No; Although there are some keyboard shortcuts
available for basic tasks such as Run (F5), most of
the buttons still have to be clicked with a mouse. In
addition, the Ribbon used in the WPF window does
support Key Tips (the sort seen in MS Word when
the [Alt] Key is pressed), but | have not made use of
these.

Therefore, | will now add a more comprehensive
implementation of shortcuts for all common
functions, including the launching of the Program

Analysis dialogs (ExeRes| Explorer, and

Visualiser).

In addition — to enable easy discovery of which
shortcuts are linked to which buttons, | have added
ToolTips to the buttons, thusly:

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

dp

-opy
e Insert Code
o Fmd[b Snippet... -
| Ctrl = F |
All of the "DocScript Source" from the Testing Yes; see previous screenshots. This included the
section of the §Design, can be run successfully. "Simplest-Possible DocScript Program", which

returned the Default Exit Code of 101, because there
is no Exit-Code provided by the DocScript Program.

Justifications for Actions Taken: By adding a greater number of Keyboard Shortcuts, the application
becomes easier to use, as these constitute a usability feature. In addition, by clearly and consistently
labelling which Shortcuts can be used for each Button, the user is able to rapidly learn them.

Some of the shortcuts are — | feel — so important, that they ought to be even more overtly shown to
the user. For example, the [Run (F5)] Button has its shortcut hard-coded onto the Button Text,
because this has to be considered the most-clicked button of the entire application, so it can
therefore save the most time by having a Shortcut.

[Stage 4]

DocScript Interactive (DSI) Development

Interactive, is the DocScript component which can host real-time, multi-client
execution sessions for a DS Program. Several clients can tune-in to the execution
session, with each client being able to see outputs and LogEvents. When () is
required by the DocScript Program, all clients have the chance to provide an input

response, and the first client to do so, has their response accepted by the session.

Writing the API

The Server-side APl will use XML, and will follow the API-Specification which | delineated in the
§Design.

Explanation & Justification: XML is a commonplace and standardised serialisation format, and befits
this project far better than JSON or CSV/TSV. In addition, XML-Literals are built-in to the Visual BASIC
.NET Programming language, in which | am writing the server-side API. This makes it quick and terse
and efficient to prepare API responses. JSON is designed to represent Key-Value-Pairs, and does not
support Namespaces, Schemas, Comments, or tree-based data representation; it would be a poor
choice for any project, but especially one that necessitates the analysis of individual layers of the
development stack (e.g. exploring raw, plaintext API responses), such as DocScript.

Here is the style of API-Response | have decoded to use:

& C (% @ htipy//localhost:400/AP/Interactive/?Action=Debug

MullNetNET [FY ToDo Y Courses & & @& | B 12 & « ToDo Conv ## Fusion 360 Temp B Les Choristes - Pépi...

This XML file does not appear to have any style information associated with it. The document tree is shown below.

¥ <APIResponse>
<DataAboutResponse HTTPStatusCode="480/BadRequest"” ErrorMessage="An unrecognised ?Action was specified." LongPollingTimedOut="False"/>
<ResponseContent/>

</APIResponse>

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

1 Explanation & Justification: This APl schema provides the HTTP status code not only in the HTTP
response headers, but also as PlainText in the XML. This helps with debugging!

At this point, it is just a matter of following the API specification from §Design, and implementing
each of the EndPoints...

=Namespace WebParts

2

3 Partial Public NotInheritable Class API

= Public Shared Sub ExecutionSessionASPX(ByRef _Request As HttpRequest, ByRef _Response As HttpResponse)

B

7 DocScript.WebParts.InitialiselebExecutionEnvironment (_TIncommingURL:=_Request.Url.Absolutelri)

8

a Try : _Request.EnsureTheseQueryStringsAreSpecified(_ Response, "Action")

1@

11 Select Case _Request.QueryString(“Action”).ToUpper()

12

13 Case "GetExistingExecutionSessions™.ToUpper() °

15 REM QueryStrings: [1

16 REM Returns: [<ExistingExecutionSesions>]

17

18 Try

19

20 Dim _ExistingExecutionSessions As XElement() = DatabaselInteraction.GetExistingExecutionSessions()
21 APTResponse.FromalidRequest({}, {_ExistingExecutionSessions.WrapIn("ExistingExecutionSesions™}}).5end(_Response)
22

23 Catch _Ex As Exception : Throw New DSWebException("@Action=GetExistingExecutionSessions™, _Ex) : End Try
24

25 Case "PrepareSession”.ToUpper() '

26

27 REM QueryStrings: [ProgramName]

28 REM Returns: [EsID]

29

38 Try : _Request.EnsureTheseQueryStringsAreSpecified(_Response, "Programiame™)

31

32 Dim _ESID$ = DatabaseInteraction.CreateExecutionSession(_Request.QueryString("Programlame”))
33 APIResponse.FromvalidRequest({"ESID", _ESID}).Send(_Response)

34

35 Catch _Ex As Exception : Throw New DSWebException(”@Action=PrepareSession™, _Ex) : End Try

36

37 Case "GetSessionState".ToUpper() "hittp://localhost:488/APT/Interactive/?Action=GetSessionStatefESID=HELLOW_2KM
38

39 REM Querystrings: [ESID]

46 REM Returns: [Esstate]

42 Try : _Request.EnsureTheseQuerystringsAreSpecified(_Response, "ESID")

43

L Dim _ESStated = DatabaseInteraction.GetExecutionSesionState(_Request.QueryString("ESID™))
45 APIResponse.FromvalidRequest({"E5State”, _ESState$}l).Send(_ Response)

46

a7 Catch _Ex As Exception : Throw New DSWebException("@Action=GetSessionState™, _Ex) : End Try

43

M These are the first 3 of 15 EndPoints in the DocScript Interactive API.

Validation: The following features ensure that APl requests are valid...

e Required URL QueryStrings are checked-for with my

|EnsureTheseQuer‘yStr‘ingsAr‘eSpecified()| Function.

o The Syntax for the XML Response is made uniform and consistent, by routing the response data
through an instance of the Class, and then calling thereon.

e QueryString Arguments such as the are validated against regular-expressions, so that no
peculiar characters make it past the APl and into deeper parts of the Back-End such as the
DataBase.

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

Implementing the DocScript DLL
This call to logic in the DLL occurs within the DSIExecutionSessionWorker assembly.

24 Dim _Source$ = WebParts.DatabaseInteraction.GetUploadedProgramFromESID(_ESID:=_ESID).[@Source _

25 .Replace(vbCrLf, vbLf).Replace(vbLf, vbCrLf} 'The JavaScript might not send the source to the API with zll LineBreaks as CriLf
26

27 WebParts.Databaselnteraction.SetExecutionSessionState_Running(_ESID)

23 WebParts.DatabaseInteraction.ResetExecutionSession(_ESID) 'Reset the ExeSes (Clear LogEvents, Outputs, and Inputs)
29

e Dim _Program As New DocScript.Runtime.Program(

31 _Tokens:=DocScript.Runtime.Parser.GetTokensFromSource (_RawSource:=_Source),

32 _ExecutionContext:=ESWorkerExecutionContext Resources.ESWorkerExecutionContext(_ESID)

33)

34

35 Dim _Program_ExitCode As Int32 = _

36 _Program.Run({}) _

37 .ReturnStatus.Program_ExitCode _

38 .GetValueOrDefault(defaultValue:=DocScript.Runtime.Constants.ProgramExitCode_Default)

39

48 REM MNow:

41 ' - Change the ExeSes "State"” to Finished

42 ! - Write the ExitReason intoc the Table as: ExitedMormally DSExitCode={_Program_ExitCode}

43 ! - Exit from this Process, returning @

45 WebParts.DatabaseInteraction.SetExecutionSessionState_Finished(

46 _ESID:= ESID,

47 _ExitReason:=5tring.Join(" "c, WebParts.DEContent.ES_ExitReasonFlag ExitedNormally, WebParts.DBContent.ES_ExitReasonFlag_DSExitCo
48)

49

58 UsefulMethods.ConsoleWriteLineInColour("Exiting with ExitCode @.", ConsoleColor.Green)

51 Envircnment.Exit(exitCode:=8)

This assembly is the DSIExecutionSessionWorker.exe file, which is instanciated by the Server-Side
when the [InitiateSession| API-EndPoint is called. The Server then spins-up an ESWorker

executable, like this:
[m7|svchost exe 0.m
= [m7svchost exe 0.m

=R v 3wp exe 543
% DSIExecutionSessionWorker exe

% DSIExecutionSessionWorker exe 148
[m7|svchost exe
=71 svchost exe 0.01 € One ESWorker per DSI-Session

In the command-line arguments to an ESWorker, the ESID is passed in the form . This
uses the same CLA-Manager which | wrote for DSCLI earlier.

Prototype: This point marks a milestone in the product, which is now capable of...

e Accepting a call to [/API/Interactive/?Action=InitiateSession&ESID=*|to startan
Execution Session being hosted on the DSI Server.

e Instantiating a new ESWorker Executable as a child-process of the IIS Worker Process .

e Responding to the client requesting the initiation, with a well-formed APl Response and HTTP
status code.

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

SQL Server Interaction

| wrote a Class called SQLQueryRunner, to sim

DSE Form SELECT * FROM [TestingDB].[dbo] [People]: | Execute |

...With the Code-Behind...

Private Sub ExecQueryButton_Click() Handles ExecQueryButton.Click

'Log via the Default LogWindow
DocScript.Llogging. LogUtilities.CurrentLlogEventHandler = DocScript.logging.BuiltInlogEv

"Instanciat the SQL Runner
Dim _SQLQueryRunner As Mew DocScript.Utilities.sQLQueryRunner("MNLT@L\SQLEXPRESS™)
_SQLQueryRunner. ExecuteQuery(Me.50LQueryTextBox. Text)

"Copy the SQL Query output to the DataGridView on the Form
Me.SQLOutput_DataGridvView.DataScurce = _SQLQueryRunner.QueryOutputDataTable

End Sub

This is the Execution Plan for the SQL SELECT Statement | am using:

W% ~ <

I Ea Messages ;‘ Execution plan

Query 1: Query cost (relative to the batch): 100%
SELECT * FROM [DocScript_Test0].[dbo]. [UploadedPrograms];
4

Clustered Index Scan (Clustered)
" ©Clustersd Index Scanning aclustered index, entirely or only a range.

[UplozdedPrograms]
2% physical Operation Clustered Index Scan
Logical Operation Clustered Index Scan
Estimated 1/0 Cost 0.003125
Estimated CPU Cost 0.0001581
Estimated Number of Executions 1
Estimated Operator Cost 0.0032831 (1003)
Estimated Subtree Cost 0.0032831
@ Query executed successfully. Estimated Number of Rows 1
Estimated Row Size 4095B
Ordered Fae
'@ 0Erors | 1\ 14 Wamings | (i) 0 Mes NodeID 0
Description Object

[DocScript_Test0].[dbo].[UploadedPrograms].

[PK_UploadedPrograms]

Output List

[DocScript_Test0].[dko].[UploadedPrograms]. ProgramMName,
. = DocScript_Test0].[dbo].

g Error Lt Ul EUpIDadgl_lmgra]ngs].'ﬁ]msl}plnaded, [DocSeript_Test0].

[dbo].[UploadedPrograms)].Source

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

Prototype: This point marks a milestone in the product, which is now capable of...

e Dependably and reliably running an SQL Query on an SQL Server (for the testing, this was simply a
copy of SQL Server Express 2008 R2 on my development workstation)

e Retrieving the results from the database in a and outputting these onto a user-
interface.

o Completing all of this in under a millisecond (Thanks x86!)

The DSIExecutionSessionWorker.exe program implements this same [SQLQueryRunner| Class, and

uses it to write Output-Events to the Database, and also to write Input-Prompt to the Database. It
then waits a finite length of time for an Input-Response to be inserted into the database (submitted

by a DSI Client via [/API/Interactive/?Action=ProvideInputResponse]), and then reads this

response value, and uses it for the continued execution of the DocScript program.

Here is how that's implemented:

43 Public ReadOnly ESWorkerOutputDelegate As Action(Of String) = _
49 Sub(_Message$)

S8

51 REM Log the Message in the ExeSes Outputs Table

52 WebParts.DatabaseInteraction.AddExecutionSessionOutputEvent(EntryPoint.TargetExeSes_ESID, _Message)
53 UsefulMethods.ConsoleWriteLineInColour("Wrote OutputEvent to DB: " & _Message, ConscleColor.Blue)
54

55 End Sub

Public ReadOnly ESwWorkerInputDelegate As Func(Of String, String) = _

15 Function(_Prompt$) As String

16

17 REM Write the "InputPrompt” and "TimeSubmitted” to the [{ESID} Inputs] Table

18 REM Wait a maximum of ESHorker_InputRequest_MaxLifetime, before Throwing a [New DSInputRequestTimedOutException()]

20 Dim _TargetInputEvent_ID$ = WebParts.DatabaseInteraction.AddExecutionSessionInputEvent_RequestPart(EntryPoint.TargetExeSes_ESID, _Prompt)
21 Usefultethods.ConsoleWriteLineInColour("Wrote InputEvent to DB: " & Prompt, ConscleColor.Magenta)

22

23 Dim _Request_MustEndAt As DateTime = DateTime.MNow.Add(WebParts.Resources.ESWorker_InputRequest MaxLifetime)

24 while (DateTime.Mow < _Request MustEndAt)

25

26 If (WebParts.Databaselnteraction.GetExecutionSesionInputEvents(EntryPoint.TargetExeSes ESID).First(Functien(_InputEvent As XElement) _InputEvent.@ID = _TargetIng
27

28 UsefulMethods.ConsoleWriteLineInColour(“Detected InputResponse from DB: " & _Prompt, ConscleColor.Magenta)

29

38 *Return the InputResponse present in the {ESID} Inputs Table

31 Return WebParts.Databaselnteraction.GetExecutionSesionInputEvents(EntryPoint. TargetExeSes ESID) _

32 .First(Function(_InputEvent As XElement) _InputEvent.@ID = _TargetInputEvent_ID) _

33 .@InputRespeonse

31

33 End If

38

37 ‘Pause for a few MS, then Check again...

38 Threading.Thread.Sleep(WebParts.Resources. LongPollingRequests_IntervalCheckingDelay)

39

4@ End While

42 'If we're here, then we didn't receive an Input-Response during the 8 Mins, so Throw a [New DSInputRequestTimedOutException()]

43 LogSystemMessage("[The InputEvent was not respended-te] before the ESWorker Max-InpuptRequest-Lifetime occured; Throwing a [New DSInputRequestTimedOutExceptien()]”,
a4 Throw New DSTnputRequestTimedOutException(WebParts.Resources.ESWorker_InputRequest_MaxLifetime)

a5

46 End Function|

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

Database Structure
| wrote these SQL files to build the DocScript Interactive Database...
=~ | DatabaseResources
* [PerkS
5] CreateCEPsTable.SQL
5] CreatelnputsTable.SQL
5] CreatelogEventsTable SQL
i3] CreateQutputsTable.S0QL
%] _CreateEntireDB.5SQL
@ _Tests.50L
5] CreateDSDB.SQL
5] CreateExecutionSessionsTable SQL
%] CreatelUploadedProgramsTable.SQL

The | CreateEntireDB. SQL]file automatically creates all the required (initial) tables, and the
database. It also contains instructions for DSI Setup:

1 /=

2 D5I enables the execution of DocScript Programs in Real-Time, Multi-Client, Execution-Sessions.

3

A e

5 DocScript-Interactive Setup Instructions:

6 mmmmmmmmmm e m e

7 1) Install Ms-sQL-Server (ideally as the Default-Instance)

8 2) Run _CreateEntireDB.SQL, [Ctrl+H]-ing {DocScript_DatabaseName_Placeholder} with the chosen name e.g. "DSInteractive”
9 3) Specify the Database-Name and SQL-Server in \DSWebParts\DSInteractive.config AND \DSIExecutionSessionWorker\bin\Debug\DSInteractive.config
18 4) Either: Ctrl+F5 the WebParts Project in Vs,

11 5) ...0r host the DSWebParts\ directory with IIS, and give the IIS AppPool Database Permissions (https://stackeverflow.com/questions/7698286/1
12 These are the permissions:

13 - (db_datareader, db_datawriter, and db_owner needed for CREATE TABLE ability)

14 - SQL Server on same machine: "IIS APPPOOLVASP .NET v4.8"

15 - SQL Server on different server: "DOMAIN\COMPUTERE"

16

17 This Script creates the Entire DocScript-Interactive DataBase, with all its Tables.

18 This is essentially the same as running each of the indiwvidual .SQL Files.

19 Note: The tables for each ExecutionSession are created by DSI automatically.

28 -

21 R R RN

22 Unfortunatly, Variables can't be used for the DataBase Name:

23 So - before running this file - Ctrl + H {DocScript DatabaseName_Placeholder} with the actual name.

24 Y

25 -

26 IIS: Remember to grant the IIS AppPool User permission to access the DB:

27 https://stackoverflow.com/questions/7698286/login-failed-for-user-iis-apppool-asp-net-v4-8

28 -

29 ...And remember to grant the just-created-lLogin permissions to CREATE TABLEs:

38 Go into the database, security, users, right-click on the user, properties, Membership, check db_owner.
31

32 =/

5@ fF¥*F¥** gbject: Database [{DocScript DatabaseName_Placeholder}] Script Date: @3/17/2822 28:41:15 *****x*/
51 IF EXISTS (SELECT name FROM sys.dat 5 WHERE name = N'{DocScript_DatabaseName_Placeholder}')
52 DROP DATABASE [{DocScript_DatabaseName_Placeholder}]

33 G0

54

55 USE [master]

56 GO

37

58 CREATE DATABASE [{Doc5Script_DatabaseName_Placeholder}]

59 G0

6@

61 ALTER DATABASE [{DocScript DatabaseMame_Placeholder}] SET COMPATIBILITY LEVEL = 188
62 GO

63

64 IF (1 = FULLTEXTSERVICEPROPERTY('IsFullTextInstalled'))

G5 begin

66 EXEC [{DocScript DatabaseName_Placeholder}].[dbo].[sp_fulltext database] {@action = 'enable’
57 end

68 GO

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

188
189
198
191
192
193
194
195
244
245
246
247
248
249
258
251
252
253
254
255
256
257

CREATE TABLE [dboc].[UploadedPrograms](
[ProgramMame] [wvarchar](1@@) NOT MNULL,
[TimeUploaded] [datetime] NOT MNULL,
[Source] [nvarchar](max) NOT NULL,
CONSTRAINT [PK_UplocadedPrograms] PRIMARY KEY CLUSTERED
1
[ProgramName] ASC
JWITH (PAD INDEX = OFF, STATISTICS MORECOMPUTE
) ON [PRIMARY] TEXTIMAGE ON [PRIMARY]
CREATE TABLE [dbo].[ExecuticnSessions] (
[ESID] [varchar](1@@) NOT NULL,
[ProgramName] [wvarchar](18@) NOT NULL,
[TimeStarted] [datetime] MNULL,
[TimeEnded] [datetime] NULL,
[State] [warchar]({1@@) NOT MULL,
[ExitReason] [nwarchar](max) NULL,

= OFF,

CONSTRAINT [PK_ExecutionSessions] PRIMARY KEY CLUSTERED
[ESID] ASC

) WITH (
PAD_INDEX = OFF, STATISTICS NORECOMPUTE

) ON [PRIMARY]

i

L

= OFF, IGNORE_DUP_KEY = OFF,

) ON [PRIMARY] TEXTIMAGE ON [PRIMARY]

=0

[Above] CreateEntireDB.SQL

Structure and Modulatory: This DSI Database is well-structured, because...

e The tables comply with 1-NF and 2-NF standards; the of the UploadedPrograms

Table appears as a foreign key in the ExecutionSessions Table:
NLTOI\SQLEXPRE...ploadedPrograms | MNLTO1\SQLEXPRE...xecutionSessions |

CEPCLIENT.DS

DSIMSGEOX.DS
ENDLESSINPUT.DS
FINITECEPCLIENT.DS
HelloWorld.DS
PLAYWAV.DS
PRIMESBELOW100.D5

SLEEPG.DS
SMTH.DS
NLLL

BIO2017_COLOURPYRAM...

DSI_GETCURRENTESID.DS

PRIMESBELOW 100_BASE...

2023-01-04 20:39:57.260
2023-01-02 14:59:01.520
2023-01-12 16:50:31.933
2023-01-12 16:56:38.360
2023-01-01 19:17:51.630
2023-01-12 16:01:58.647
2022-12-21 11:41:43.227
2023-01-02 16:40:25.173
2023-01-02 16:43:02.310
2023-01-02 16:44:13.190
2022-12-30 09:21:58.717
2023-01-04 13:07:23.510
MLL

ProgramMame TimeUploaded Source
» LINRIGHTAWAY .DS 2023-01-02 12:07:43.983 Function <Mumber > Main (<String@> _CLAs)<String> _Mame : Input{"What's your Mame?")Output{"Run...

#BIO 2017 Question 1(a)#Ben Mullan {c) 2022#https: /fwww.olympiad.org.uk/papers/2017bio/bio 17-exa...
#CEPClient.DS - A Simple DocScript Program to act as & CEP-Reception Keep-alive for DSIFunction <Num...

Function<Void >Main{)Output{"The current ESID is: ™ & DSI_GetCurrentESID()EndFunction

function <void:> main (Jdsi_msgbox("This really is from DSI"jendfunction

#EndlessInput.DSFunction <Void > Main ()While (True) <String=> _Input : Input{"Enter some Input”)Outpu. ..
#FiniteCEPClient.DS - A Simple DocScript Program to act as a CEP-Reception Keep-Alive for DSI for a Finit...
Function<Vaid =Main{Output{™Hello, World! “JEndFunction

#Helloworld. DSFunction <Void> Main {Input{Press [Enter] to play the audio...”)System_PlayWav(":\Za...
Function <Void = Main {)Output("Primes below 100:" & Const_CrLf() & GetPrimesBelow(100))EndFunctionF...
#"A user wishes list the prime numbers below 100, in each base from 2 (Binary) to 32 (Duotrigesimal)"#£8...
Function <Mumber > Main (<String@> _CLAs)Output({"Sleeping. ..")DS_Sleep(000)Cutput(™... SleptJRetu. ..
Function <Mumber > Main (<5tring@> _CLAs)Loop {3)<Number > age : Input{"Age pls: "JOutput{™four na...
NULL

MMLTOL\SQLEXPRE...ploadedPrograms * MNLTO1\SQLEXPRE...xecutionSessions |

ESID ProgramMame TimeStarted TimeEnded State ExitReason
» DSI_GE_DEOQ DSI_GETCURRE... 2023-01-2008:... 2023-01-2008:... Finished ExitedMormally ...
DSI_GE_IY1 DSI_GETCURRE... 2023-01-12 20:... 2023-01-1220:... Finished ExitedMormally ...
FINITE_&6G FINITECEPCLIE... 2023-01-17 14:... 2023-01-17 1%:... Ready ExitedMormally ...
HELLOW _501 HELLOWORLD.DS 2023-01-12 20:... 2023-01-12 20:... Finished ExitedMormally ...
* ALEL AL ALEL AL MLEL ALEL

It is easy to perform a conditional selection on either the SQL Server, or the Web Server, via
either TSQL or .NET respectively.

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

One table is created for each type of Event, for each Execution-Session:

=l dbo HELLOW 501 CEPs

= dboHELLOW 501 Inputs
= dbo.HELLOW _501_LogEvents
=1 dboHELLOW_501_QOutputs

This means that the data are neatly segmented into different tables, and can be easily selected

individually or in groups.

| have also enforced a validity and consistency across the database, simply in my choice of DataTypes
for the different fields...

Validation: The following ensure that data of the correct variety is present in the SQL Tables...

UploadedPrograms\ProgramName is
ExecutionSessions\ESID is
ExecutionSessions\State is
ExecutionSessions\ProgramName is
{ESID}_LogEvents\Severity is
{ESID}_LogEvents\Category is

The relevant fields in these tables are declared [NOT NULL|, to protect against
NullReferenceExceptions.

ARCHAR (100)| means that ONLY ASCII characters are valid, and only 100 of them at that.
Therefore, just in the choice of datatype, | have already protected the system against strange

Unicode escape characters, or unbreakable spaces, or the backspace character-code etc.

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

Client-side Pages and Scripts

The client's web browser — of course — will never actually see any of the ~8,000 lines of script
forming the APl and Database. | will now write client-side pages (HTML and CSS) and scripts
(JavaScript), which the client's browser will render.

| slightly re-thought how the input system ought to work on the client-side:

DSI [5] Client Pages

HTML for the Client’s Browser

PRole=0bserver
PRole=Responder
?Role=Controller (CEP-Insertion and Input-Responding)

Interactive/ESParticipant

(No CEP-Insertion or Input-Responding)

Required functions:

- Create ES

- Participate in ES
View old ESs

Pages:

- ESParticipant.ASPX?ESID=*&Role=*
- ESManager.ASPX

- UploadProgram.ASPX

(No CEP-Insertion, but Input-Responding)

Interactive/ESManager

UploadProgram

Outputs

[12:14:00] Hello, World!
[12:14:01] Hello, World!
[12:14:02] Hello, World!

Inputs

[14:15:00] (Enter your name) “Ben Mullan”
[14:15:00] (Enter your name) “Ben Mullan”
[14:15:00] (Enter your name) “Ben Mullan”

Log Events:
0 executed

| CEPs: 0 executed | ‘ CEPs: 0 executed ‘

Execution Sessions

HELLO_AHA42 — HelloWorld.D5: Ready
HELLO_AH42 — HelloWorld.DS: Ready)
HELLO_AH42 — HelloWorld.DS: Running (started 08:15)
HELLO_AHA42 — HelloWorld.D5: Ended

Source
Function <Veoid> Main

[+Add]
Can Prepare an ES from an UploadedProgram,
Or immediately Prepare&Initiate an ES from an UploadedProgram

[Run]
(Prepares a New ES, and
initiates it)

| finalised my choice on frameworks used to style the webpages, and have decided to use Bootstrap,
because is very widely-documented, and has good cross-browser compatibility.

This is what client-facing pages look like after writing the markup herefor...

- . .
bs DocScript Interactive
Uplozd Progran Jein Sessicn Mensge Sessions Helpt
Manage Execution-Sessions
(@) EsI0 + s, Progran: State: Finished Started: Ended: Exit-Reason:
BEEPFI_JOV BEEPEIVE.DS 86/01/2023 6/01/2023 ExitedNornall
j 6:30:33 6:30:41 DSExitCode-101
- (Afternoon) (Afternoen)

(1) ESID ¢ 25
PLAYWA_ANE -

Program:
PLAVHAY.DS

States Finished Started:
5/01/2023
7:48:47
(Afternoon)

Ended: Exit-Reason:
25/01/2023 ExitedNormall
7:49:26 DSExitCode=101
(Afterncon)

(2) EsI0 + os Progran: State: Finished Started:
PRIMES_D7X . PRIMESBELOW100.05 95/01/2023
6:32:44
~ (afternoon)

Ended: Exit-Reason:
5/01/2023 Exitediormall
6:32:47 DSExitCode=101
(Afternoon)

what?

Docscript: Interactive © Ben Mullan 2022 Cookies what

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

bs DocScript Interactive

upload Program Jein session Manage sessions Help!
Upload a Program!
Program Name
E.g. Helloworld.Ds .DS

The Program may be saved under a slightly different name, if the entered one iz already in-use

Source

Type-out, drag-in, er bre

- 0

~far a DocSeript Pragram...

Existing Programs

Execution-Sessions can alse be created from Uplcaded-Programs via the DSI-Execution-Sessicn-Manager

inction <Veoid> Main () inction <Void> Main ()
'stem Run("WMPlayer J:\Z: rstem Run("C:\Program Fi]
\dFunction Jumber> CallCount : 0
inction <Veoid> Main ()
;allCount : CallCount +
2FARMERS.DS 3FARMERS .DS BEEPFIVE.DS

DocScript Interactive

Upload Program Join Session Manage Sessions Help!

DSI: Home

Welcome to DocScript Interactive!

{Video here when filmed...}

DSI enables the execution of DocScript Programs in Real-Time, Multi-Client, Execution-Sessions.
Participants of an Execution-Session have one of three possible roles; Observer, Responder, or Controller.

Observers, can watch the Session's Events occur.

Responders, can also respond to Input-Requests from the Program (caused by the DS Input() Function).

Controllers, can also inject JavaScript "Client-Execution-Packages”, which are immediately executed on all clients of the Session. Controllers also

have the ability to re-initiate the session when it is over.

To get started, use the links in the Navigation-Bar...

Debugging Links
* Useful CEPs
® Join Mass-testing CEPClient...

DocScript: Interactive © Ben Mullan 2823 (Cookies what? =

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

DocScript Interactive

Uplcad Program Join Session Manage Sessicns Help!

Join Execution-Session

ES-State (DSI_GE_OEO)

The Execution-Sessicn started at: 20/e1/2823 8:28:87 (Morning)
ES-Event-Listening Responses received: 1

The Execution-Session ended at: 28/81/2023 8:28:88 (Morning)

< Run again...

ES-Events
Output Events
D Time Submitted Message
1 28/81/2823 §:23:88 (Morning) The current ESID is: DSI_GE BEQ
Input Events
i} Time submitted Prompt Response rResponded-to Time
Log Events
Injected CLient-Execution-Packages
D Time Submitted JavaScript

Inject Client-Execution-Package

Javascript to run:

DSI.MsgBox("Hello!"™);

P
] Inject CEP
DocScript: Interactive © Ben Mullan 2823 Cookies whot? =

[Above] The DSInteractive ESParticipant Client page

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

This is what the Code-Behind looks like for my HTML's general structure:

1 <%@ Page Language="VB" %> <%@ Import Namespace="DocScript.CompilerExtentions” %>
2 <!-- Ben Mullan (c) 2023. All Rights Reserved. -->

3 F<html>

4 B <head>

5

6 <titlerDocScript: Interactive!</title»

7 <!-- <meta charset="UTF-8" /> -->

8 <meta name="description” content="DSI Home" />

9 <meta name="keywords" content="DecScript, HomePage" />

10 <meta name="author" content="Ben Mullan" />

11 <meta name="viewport" content="width=device-width, initial-scale-@.9" />

12

13 | <%= Response.GetScriptAndCSSImports().TabbedInBy(2) %>

14

15 </head>

16 B <body onload="">

17

18 <!-- site Title & NavBar -->

19 H [¢div class="container nter”>...</div)|

38

39 <!-- Main page content --»
48 <main role="main" class="container">
41
a2 <1-- Page Heading -->
43 <div class="h2 ds-heading">DSI: Home</div>
a4 <div class="h4 ds-heading”>Welcome to DocScript Interactive!l</div>
45

46 {video here when filmed...}

a7 = <p class="py-4">

43 DSI enables the execution of DecScript Programs in Real-Time, Multi-Client, Execution-Sessions.
49

sa Participants of an Execution-Session have one of three possible roles; Observer, Responder, or Contraller.

51 Observers, can watch the Session's Events occur.

52 Responders, can also respond to Input-Requests from the Program (caused by the DS Input() Function).

53 Controllers, can also inject JavaScript "Client-Execution-Packages”, which are immediately executed on all clients of the Session.
54 tontrullars also have the ability to re-initiate the session when it is over.

55

56 <i>To get started, use the links in the Navigation-Bar...</i>

57 </p>

58

59 [<p class="py-4">

) <div class="ha ds-heading">Debugging Links</div>

£l
B <lixUseful CEPs</1ix
<lirJoin Mass-testing CEPClient...</a»</1li>

</p>

</main>

<l-- Footer. **ToDo: Make sticky to bottem of page -->

B [cdiv_class="container mt-5 pt-5">...</div>

</body>
</html>
<% Response.SafelyEnd() >

R
G-I R - B v S

Prototype: This point marks a milestone in the product, which is now capable of...

e Displaying a user interface to the user, with the correct buttons and labels for each component.

e Running JavaScript initiated by components of the page via HTML jonclick=""]or onload=""|

attributes; this is the start-up Console-Banner for instance:

@ DevTools - loc (SPX = | O |
(® @) | Elements Console Recorder & Sources Network Performance insights & performance » CPIAE - B
B © topY| @ | Filter Alllevels ¥ || 2Issues: @2 | €%

v console.group

DocScript:

Interactive!

e Responsively scaling to resizing of the browser window, and displaying well and clearly on mobile
devices whose displays are taller than they are wide.

o Performing server-side HTML-via-ASPX compilation for the pages which require QueryStrings. For
example, ESParticipant.ASPX must be passed a QueryString.

Scripting: Linking the Back- to the Front-end

The JavaScript has the role of making requests to the API, from the client- to the server-side. These
scripts are never actually seen by the user, but control the application web page, including
programmatic user-interface functionality.

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

~ [ClientPages
b [Interactive
~ [Resources
~ [Seripts I
S aAxls e
3]DsLIs
5] EntryPoints.JS
@ General J5
])Query.MinJS
31)Query.ULMin.JS
) SweetAlert.JS
@ UserInterface)5
] UtilitiesJ5
b [Stylesheets

Response.GetScriptAndCSSImports()

<&l Page Language="VB" %> «¥i Import Namespace="DocScript.CompilerExtentions™ %>
<!-- Ben Mullan (c) 2823. All Rights Reserved. -->
<html>

<head>

=

<titlexUpload Program (DSInteractive)</titlex

¢!-- <meta charset="UTF-8" (> --»

<meta name="description" content="Upload a DoccScript Preogram te DSI™ />
<meta name="keywords" content="DocScript, UploadProgram" />

<meta name="author" content="Ben Mullan"” />

<meta name="viewport" content="width=device-width, initial-scale=0.9" />

- Response.GetSeriptAndCSSInports (). TabbedInty (2) %

</head>

2
3
4
5
6
7
3
9

=
(SR TR R

' <summary:
""" (MullNet CompilerExtention) Writes the opening html, head (etc...} elements, importing the required scripts too.
</ summary>
| <remarks></remarks>

<G6lobal.System.Runtime.CompilerServices.Extension()>

Public Function GetScriptAndCSSImports(ByRef _ResponseObject As HttpResponse) As String

Return {
<divs

<!-- Bootstrap --»

<link rel="stylesheet” href="/ClientPages/Resources/Stylesheets/bootstrap.min.css™/>

<script defer="true" type="text/javascript"” src="/ClientPages/Resources/Stylesheets/bootstrap.bundle.min.js"></script>
<link rel="stylesheet” href="/ClientPages/Resocurces/Stylesheets/bootstrap-icons.css™/><!-- Needs IIS woff MIME-Type -->

<l-- €55 -->
<link rel="stylesheet" href="/ClientPages/Resources/Stylesheets/DocScript.Cs5"/>
<link rel="stylesheet™ href="/ClientPages/Rescurces/Stylesheets/Utilities.C55"/>

<!-- Javascript --»

<script type="text/javascript” src="/ClientPages/Resources/Scripts/IQuery.Min.J5"></script>
<script type="text/javascript” src="/ClientPages/Resources/Scripts/JQuery.UI.Min.J5"></script>
<script type="text/javascript” src="/ClientPages/Resources/Scripts/SweetAlert.J5"></script>
<script type="text/javascript” src="/ClientPages/Resources/Scripts/General.Js"></script>
<script type="text/javascript” src="/ClientPages/Resources/Scripts/Utilities.]5"></script>
<script type="text/javascript™ src="/ClientPages/Rescurces/Scripts/EntryPoints.J5"></script>
<script type="text/javascript” src="/ClientPages/Resources/Scripts/AJAX.15"»</script>

<script type="text/javascript” src="/ClientPages/Resources/Scripts/UserInterface.Js"»</script>
<script type="text/javascript™ src="/ClientPages/Rescurces/Scripts/DSI.JS"></script>

</div>
).Tostring(System.Xml.Ling.SaveOpticns.None) "“"Indent” whilst formatting

End Function

indow.Utilities

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

The bulk of the scripting can be found in the File, which contains functions which perform

requests for Asynchronous-JavaScript-And-XML...

|function InitiateExecutionSession(_ESID, _Optional CallbackOnInitiationSuccess, _Optional DontShowMsgBoxOnSuccess) {

/=
Show Blocking-Loading-Message...
Make request: /APL/Interactive/?Action=InitiateSession@ESID={_ESID}
...Dismiss LoadingMsg; show SuccessMsg; LoadExistingExecutionSessions()

*/

window.UL.ShowBlockingloadingMessage("DSI is starting " + _ESID + "...");

window.Utilities.SendAJAXRequest(

("/API/Interactive/?Action=InitiateSessiondESID=" + encodeURIComponent(_ESID)),

function {_ResponseContent) {

if (!_Optional DontShowMsgBoxOnSuccess) {
window.UIL.DismissBlockingloadingMessage();
Swal.fire({
icon: "success",
title: _ESID + " was successfully started”,

text: "The DocScript Program is being interpreted...™

1) .then(
function () {

if (LoadExistingExecutionSessions) { LoadExistingExecutionsessions(); }

}
i
}

if (_Opticnal CallbackOnInitiationSuccess) { _Opticnal CallbackOnInitiationSuccess(); }

b
function (_ErrorMessage) {
window.UI.DismissBlockinglLoadingMessage();
Swal.fire({
icon: "errer”,

title: "DSI could not start the Execution-Session”,

text: _ErrorMessage,

footer: "Reload DocScript Interactive..

hE

...And further down the file...

182
183
134

/* Shows a confirmation box before deleting */
function DeleteUploadedProgram(_Programiame) {

Lfaxt

i
Request confirmation...
Make request: /API/Get.ASPX?Ttem=DeleteProgram&ProgramName={_Programhame}
*/
Swal.fire({
title: "Are you sure?”,
text: "Any Execution-Sessions using the Program \"" + _ProgramName + "\" may become dysfunctional or corrupt

icon: "warning”,

showCancelButton: true,

confirmButtonColor: "#83C1FC",

cancelButtonColor: "#F4BBBE",

confirmButtonText: "Delete Forever”
}).then(

function (_SweetAlertResult) {

if {_SweetAlertResult.isConfirmed) {

/* The user clicked the [Delete Forever] Button... */

window.UI.ShowBlockingloadingMessage("Deleting UploadedProgram

window.Utilities.SendAJAXRequest(

+ _ProgramName +

("/API/Get.ASPX?Item=DeletePrograméProgramiame=" + encodeURICompenent(_ProgramName)),

functien (_ResponseContent) {

window.UI.DismissBlockingloadingMessage();
Swal.fire({

icon: "success",

title: "The Program was Deleted"”,

text: "(NOTE: Execution-Sessions that were using the Program may behave erraticly...)

1) .then(
LoadExistingPrograms

bH
Is

function (_ErrorMessage) {
window.UI.DismissBlockingloadingMessage();
Swal.fire({
icon: "error",

title: "The Uploaded-Program could not be Deleted”,

text: _ErrorMessage,

footer: “Reload DocScript Interactive..."

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

Progress Recap: Where am | in the development plan? [Review]

e Done: | have just written the Web-Based (Interactive) implementation of DocScript, which
supports real-time, multi-client execution sessions.
e Next: | will perform some more thorough testing of different DocScript programs. This is now
possible, because | have implementations of the Interpreter which can be executed directly. (/
have the EXEs which invoke the logic within the DLL)

[terative Testing
During §Analysis, | listed a number of types of test, along with example testing data, which | could
use to test the product once implemented. | shall now make use of this testing plan...

Assert-style Test] Passed?

Input and Output: Erroneous DocScript source | Yes; see previous screenshots
can be taken in, but the interpreter determines

that there is something wrong, instead of

continuing and crashing.

Input and Output: API Calls can be accepted by | Yes;

the server, and they are validated syntactically e e e e
and logically for consistency and sense. This S B e o R e e e
includes the R
| <« C (Y O hitp//localhost400/AF Interactive/?Action=GetSessionStateXESID =9 @2« »00 :
T @6+ 0 @ @ B > o Blos @F Onelook R F4 emp Other bookmerk

This XML file does not appear to have any style information
associated with it. The document tree is shown below.

v <APIResponse>
<DataAboutResponse HTTPStatusCode="500/InternalServerError"
ErrorMessage="@ExecutionSessionASPX: [DSWebException]
@Action=GetSessionState: (Logged) [DSException] (Logged)
@GetExecutionSesionState (Logged) [DSValidationException]
There was not exactly one ExecutionSession for the specified
ESID. Invalid Content (in []) [9]."
LongPollingTimedOut="False"/>
<ResponseContent/>

</APIResponse>

Usability: The database can be managed viathe No; There is not a comprehensive array of buttons
web application, instead of having to perform available for every reasonably-expectable database
operations via (SQL Server Management interaction function yet.

Studio). (i.e. there should be a button in the

web interface for deleting an Execution- Because of this, | will now implement these extra
Session, instead of having to delete the records = buttons:
and tables from the database directly.) o [Delete] for an UploadedProgram

o [View] for an UploadedProgram
e [Reset to Ready] for an ExecutionSession

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

All of the "DocScript Source" from the Testing
section of §Design, can be run successfully.

[2]

CEPCLIENT.DS
Uploaded ©2/01/2023 2:59:01 (Afternoon)

7 view m W Delete

Yes; see previous screenshots.

This included the "CEPClient.DS" Sample Program,
which acts as a keep-alive, so that incoming packages
of JavaScript can be executed, for as long as the
session is needed.

#CEPClient.DS - A Simple DocScript Progra
Function <Number> Main (<String@> _CLAs)
While (True)
DS _Sleep(1000)

EndwWhile
Return ~1
ndFunction

This is incidentally how the Mass-Bluescreen
demonstration from the DS3Min Video was
orchestrated.

Justifications for Actions Taken: By adding these additional Buttons to the Web Interface, the user
can more quickly delete the ExecutionSessions and UploadedPrograms. Whilst using ssms directly
does offer more control, it is not necessarily an approachable tool for newcomers, and teachers

hosting DSl in their classrooms.

[Stage 5...]
Whole-Program Testing

With all the DocScript Implementations themselves roughly at an RCO stage (Release Candidate
Zero), | shall now test the DocScript Interpretation Engine with some real-world programs!

As | make changes to the Core Interpreter DLL (e.g. because | discover a bug, or wish to add a

feature), they will instantly be reflected in each of the Implementations too, because building any of

the implementation projects will first compile the Library DLL.

British Informatics Olympiad Question

Because this year's BIO is only a week away, | thought I'd set myself the challenge of using DocScript
to compete in it. This would go some way to proving that the language isn't just a toy or gimmick,

but can be used for important algorithmic problem-solving too! This was my entry:

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

1
2
3
4
5
6
7
8
9
10
11
12
13

17
18
19
20

21

22
23
24

25i

26
27
28
29

30!

31
32

33

34
35
36
37

41
42
43
44
45
46
47
48
49
50

52
53
54
55

57
58

60
6l
62
63

65
66

68
69

#BIO 2023 Question 1

#Ben Mullan 2022

H#-

#Run using e.g. DSCLI.exe /Run /SourceFile:"BIO_2023_0Q1.DS" /DocScriptCLAs:10@0 (Where 100 is the Input)

#EntryPoint
Function <Number> Main (<String@> _CLAs)

<Number@> ZeckendorfRepresentation : GetZeckendorfRepresentation(DS_StringArray At(_CLAs, 0))
Output(Const_CrLf() & DS_NumberArray_Serialise(ZeckendorfRepresentation, " "))
Return ©

EndFunction

[Above] DocScript Function Main()

‘#E.g. Takes in 100 and outputs {89, 8, 3}
‘Function <Number@> GetZeckendorfRepresentation (<Number> _NumberToRepresent)

#Reduced by each just-added FibTerm
<Number> _LeftToRepresent : _NumberToRepresent

<Number@> ZeckendorfRepresentation

#As long as there's still a left-over amount of the origional _NumberToRepresent...
While (-[_LeftToRepresent = 0])

<Number> _LargestFittingFib : GetlargestFittingFib(_LeftToRepresent)
ZeckendorfRepresentation : DS_NumberArray_Append(ZeckendorfRepresentation, _LargestFittingFib)

_LeftToRepresent : _LeftToRepresent - _LargestFittingFib
EndWhile

Return ZeckendorfRepresentation

{EndFunction

[Above] DocScript Function GetZeckendorfRepresentation()

#Gets the largest Fib which isn't GREATER THAN _MaxPossiblevalue
Function <Number> GetLargestFittingFib (<Number> _MaxPossiblevalue)

#There's no Term before 1, so account for this edge-case
If (_MaxPossiblevalue = 1)

Return 1
EndIf

#At this point, only generate the first two Terms;
#Then, after each iteration, Append the next Term
<Number@> _FibSequence : GenerateNFibs(2)

| Looking at 2 as the 2nd (Index-1) Term
<Number> _CurrentFibTermIndex : 1

#Go through all Generated Fibs, from the front, until we find one which is GreaterThan the _MaxPossibleValue;
#At this point, Return the Fib Below the too-large one.
While (True)

#0nce the current Fib Term is GreaterThan the _MaxPossiblevalue, then Return the previous Fib Term...

If (Maths_GreaterThan(DS_NumberArray At(_FibSequence, _CurrentFibTermIndex), _MaxPossiblevalue))
Return DS_NumberArray_ At(_FibSequence, _CurrentFibTermIndex - 1)

EndIf

#...Else, Generate and look at the next Fib Term
_CurrentFibTermIndex : _CurrentFibTermIndex + 1
_FibSequence : DS_NumberArray_Append(_FibSequence, GetNthFib(_CurrentFibTermIndex))

Endwhile

71

EndFunction

[Above] DocScript Function GetLargestFittingFib()

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

75§#Generates _NumTerms Terms of the Fibbonnacci Sequence
76 Function <Number@> GenerateNFibs (<Number> _NumTerms)

77

78 <Number@> _FibsToReturn

79;

80; <Number> _TIterationsToPerform : _NumTerms

81; <Number> _CurrentIteration : 1

82!

83 While (Maths_LessThan(_CurrentIteration, _IterationsToPerform + 1))
84!

85 #Add the Nth Fib to the list to return

86 _FibsToReturn : DS_NumberArray_Append(_FibsToReturn, GetNthFib(_CurrentIteration))
87:

88! _CurrentIteration : _CurrentIteration + 1

891 Endwhile

90:

91! Return _FibsToReturn

92!

93§EndFunction
[Above] DocScript Function GenerateNFibs()

97§#Gets the _N th Term of the Fibbonnacci Sequence
98§_Function <Number> GetNthFib (<Number> _N)

99i

100: #Non-recursive version:

101 If (N =1)

102! Return 1

103! EndIf

104

105: <Number> _A : 1

106 <Number> B : 2

107

108! <Number@> _GeneratedSoFar

109: _GeneratedSoFar : DS_NumberArray Append(_GeneratedSoFar, _A)
110: _GeneratedSoFar : DS_NumberArray_Append(_GeneratedSoFar, _B)
111:

112 While (-[DS_NumberArray_Length(_GeneratedSoFar) = _N])
113:

114 _GeneratedSoFar : D5_NumberArray_Append(_GeneratedSoFar, _A + _B)
115:

116: <Number> _A_Oldvalue : _A

117: A: B

118: _B : _A_0Oldvalue + _B

119

120; EndWhile

121

122 Return DS_NumberArray Last(_GeneratedSoFar)

123

124§EndFunction
[Above] DocScript Function GetNthFib()

(These screenshots are all from the DocScript Windows IDE, so also serve to show that the syntax-
highlighting thereof is effective...)

Review
For this question in the BIO, | miraculously managed to score full-marks with this DocScript Program!
What's more:

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

All the test-cases were executed in under a second (.. the language is fast)

e The interpreter never crashed (-. the language is stable)

e Tests could be run with ease, and in quick succession, owing to the inputs being provided via
command-line arguments; on the press of the up-arrow in the console window, | could instantly
run exactly the same script, just with different CLAs (.- the language is easy-to-use)

Primes-Below-100-Base-2-To-32 Example
At the very start of §Analysis, | proposed that the programming language being developed herein
ought to be able to tackle the following problem:

" A user wishes list the prime numbers below 100, in each base from 2 (Binary) to
32 (Duotrigesimal)"

To resolve this project in a gratifying, cyclical manner, | will therefore use DocScript to actually write
this program. Here it is:

#PrimesBelowl1l00 Base2T032.DS
#Brief: "A user wishes list the prime numbers below 100, in each base from 2 to 32"

Function <Number> Main (<String@> _CLAs)

#To be saved to an Output File:
<String> _AllPrimes_InAllBases

#Up to 97:
<Number@> _Primes : GetPrimesBelow(100)

#For each Base {2...32}

<Number> _HighestBase : 32_10

<Number> _CurrentBase : 2 10

While (Maths_LessThan(_CurrentBase, _HighestBase + 1))

_AllPrimes_InAllBases : _AllPrimes_InAllBases & "Base=" & _CurrentBase & ","

#For each PrimeTerm {0...100}
<Number> _HighestPrimeTerm : DS_NumberArray_Length(_Primes)
<Number> _CurrentPrimeTerm : ©
While (Maths_LessThan(_CurrentPrimeTerm, _HighestPrimeTerm))
#Output e.g. 2,
_AllPrimes_InAllBases : _AllPrimes_InAllBases & [DS_Number_ToBase(DS_NumberArra
y_At(_Primes, _CurrentPrimeTerm), _CurrentBase) & ","]
_CurrentPrimeTerm : _CurrentPrimeTerm + 1
EndWhile

_AllPrimes_InAllBases : _AllPrimes_InAllBases & Const_CrLf()
_CurrentBase : _CurrentBase + 1
EndWhile

File WriteText("PrimesBelowl1l@0® Base2To032.CSV", _AllPrimes_InAllBases, False)
Return ©

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

EndFunction

Function <Number@> GetPrimesBelow (<Number> _NumberOfPrimes)

#A prime number is: a whole number [greater than 1] whose only factors are [1 and
itself]
<Number@> _CollectedPrimes

<Number> _IterationsToPerform : _NumberOfPrimes

<Number> _CurrentIteration : 2

While (Maths_LessThan(_CurrentIteration, _IterationsToPerform + 1))
If (IsAPrime(_CurrentIteration))

_CollectedPrimes : DS_NumberArray_Append(_CollectedPrimes, _CurrentIteration)

EndIf
_CurrentIteration : _CurrentIteration + 1
EndWhile

Return _CollectedPrimes
EndFunction
Function <Boolean> IsAPrime (<Number> _Test)
<Number> _I : 2
While (Maths_LessThan(_I * I, Test) | [[_I * _I] = Test])
If ([_Test % _I] = 0)
Return False
EndIf
I : I+1
EndWhile

Return True

EndFunction

That program generates a simple .csv file, which, when viewed in Excel with some conditional
formatting, produced this rather fascinating result:

A B c o 3 F G H 1 1 K L M N o P Q R s T U v w X v z
1 [Base=2 [1001 |mor [10001 [r001:1 Jro111 [mmer |11 [rom01 [101000 [ror011 [rom11 [uoor fuson |unon
2 Base=3 m 122 201 212 1002 (1011|1101 1112|1121 1200 (1222 2012 2021 |aa11 [212> |a201 2221 |a0002 10022 |10121
3 |Base=s 31 101 103 113 131 133 211 221 223 233 311 323 331 1003|1013 1021 [1033 [mo3 |ua |wor
4 |Base=s 23 32 24 az 104 1m 122 131 133 142 203 214 221 232 241 243 304 320 342
5 |Base=6 21 25 31 35 a5 51 01 Jws 115 125 135 141 151 155 201 b1 215 225 241
6 Base=7 16 23 25 32 a1 a3 [s52 |ss 1 65 104 113 115 124 131 133 142 145 155 166
7 |Base=8 15 21 27 35 37 a5 51 53 |57 65 73 75 103 107 11 117 123 131 141
8 |Base=9 14 18 21 5 32 34 41 a5 a7 52 58 65 67 7 78 81 87 102 108 117
9 Base=10 13 17 13 |23 |29 31 37 a1 [az |47 53 59 51 67 71 7 7 83 83 B
10 Base=11 12 16 18 21 27 29 34 a8 [aa a3 49 54 56 61 65 67 72 76 81 B
11 |Base=12 1 15 17 18 |25 27 31 35 37 38 a5 a8 57 58 61 67 68 r7>5 [81
12 |Base=13 10 14 16 1A 22 25 28 32 34 38 41 47 las 52 56 58 51 65 5 76
13 [Base=14) 13 15 19 21 23 2 [0 En 35 38 B a5) 51 53 55 [so 65 D
14 |Base=15) 12 14 18 1 21 27 }g 20 32 38 e [ax a7 48 40 54 58 se 67
15 |Base=16 D 11 13 17 10 1F 25 25 28 2F 35 38 30 a3 a7 43 a5 58 61
16 |Base=17) 10 12 16 1c 1 23 [27 29 20 32 38 3A 36 a3 45 28 ar 52 ES
17 |Base=18 [H 1 15 18 1D 21 25 27 28 2H 35 a7 En) 3H 41 47 a8 Jan 57
18 |Base=19 D H 10 14 1A ic 1 |25 29 2F 32 34 3 3E 36 43 laz laD |52
19 |Base=20) H f 13 19 18 1H 21 22 27 20 2 | 37 38 3D 3 a3 a9 an
20 |Base=01) H f 12 18 1A 16 1K 21 25 28 [on [0 34 38 3A 36 E a5 20
21|Base=22) H f 11 17 19 1F U 1 23 29 2F 24 31 35 37 30 e a1 a9
22 |Base=23) H f 10 16 18 1€ u 1 21 27 20 aF 2 32 34 30 3E En a5
23 |Base=24 D H f N 15 17 1D 11 u N 25 |22 |20 2 N 31 37 ES) 3H a1
24 |Base=05) H b N 14 16 ic 16 1 1M 23 |25 B 2H EN N 34 B E3 Y
25 |Base=26) H f N 13 15 18 1 1H 1L 21 27 29 2F 2 2 31 35 38 3
26 |Base=27 D H b N 12 14 1A 1€ 16 1K 10 25 27 0 Bl 2 20 38 36
27 |Base=08) H I N 1 13 19) 1F u [23 25 £ 2 2H N 2R 35 3D
28 |Base=29 [H f N 10 2 18 1c 1E u 10 21 23 29 20 2 o 20 B A
29 |Base=30 D H b N T 1 17 18 10 11 N T 27 28 20 B BN P 37
30 |Base=31) H f N i 10 16 1A 1c 16 wm 15 v 5 29 28 1 £ Ea 34
31 |Base=22 D H b N i v 15 13 18 17 i 1R Jar J22 27 25 |2¢ 2 [2p 31

[DocScript produced these data 1]

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

Review

What that graphic essentially shows, is that the value compositions in essence cascade down and
along the prime numbers. More importantly though: what this test and example program have
shown, is that DocScript can reliably, consistently, straightforwardly, and (perhaps surprisingly)
rapidly interpret real programs to produce real, palpable results. The test has therefore been a
success, and it is almost something of a shame that there wasn't another calamitous — albeit
entertaining — failure, for me to write about herein!

Improvements to make, revealed by the Tests
Although the programs ran faultlessly, | did notice that it would be worth making the following
improvements and additions:

e Agreater number of BuiltInFunction|s would have been useful in some instances. For

example, instead of having to write Maths_GreaterThan(4, 5) | [4 = 5]] it would

admittedly have been easier if there were a singular BuiltinFunction available to act as a

operator; IMaths_GreaterThanOrEqualTo(4, 5)|. Therefore, | am adding a new series of BIFs,

to make common tasks even more easy. These include: pS_*Array_Last ()],
DS_*Array First()] [File Create()] [File Delete()], Maths_GreaterThanOrEqualTo()|
and Maths_LessThanOrEqualTo()|.

e A'"Live" mode for the command-line interpreter (DSCLI.EXE) would also have been useful, to
enable me to test single lines of DocScript, during the development of a larger Program.
Interpreted languages such as Python (which — it behoves me to say — | abhor) have such a "Live"
feature, in the form of "interactive mode" (not to be confused with DocScript Interactive, the
web-based system, which is something quite different).

Because | have written DocScript to be extensible, adding this Live feature to DSCLI is not too
difficult at all; the executable shall simply take in an additional optional command-line argument

/Live], which calls [EnterDSLiveSession ()], which infinitely loops, asking for a line of DocScript,

executing it, and re-applying the resultant symbol-tables-state to a local variable herefor. |
managed to implement the Live mode in under 100 lines. Here it is in-action:

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

F

EA Administrator: Windows NT Command Prompt

C:\Windows\system32>DSCLI /Liwve

DocScript Live Interpreter Session
Only use Statement-Contents Instructions (no Functions)
Use ? to Resolve an Expression e.g. ?14 + 33
Exit with !Exit (or Ctrl + C), cls with !Clear
Use ; for Newline

D5> <S5tring> Name : Input("Enter your name: ")
Enter your name: Ben

DS> ?Name

Ben

DS» lExit

C:%\Windows\system32>whoami
mn1t@l1lyben

(As can be seen by the introduction text for DSLive, | also added [?{Expr}| expression-resolution,
and meta-commends, to make the Live feature more user-friendly and direct.)

e | could have done with a means of viewing which Built-In-Functions were available in the

current [ExecutionContext]. | am therefore adding a "Explore Built-in Functions" button to

DSIDE. It brings up the following window:

#; DocScript IDE (Ben on \WMNLTOL)

g Home ViewPlus Program Debug
e G b Command-line Arguments:

Generate Explore Built-in
Program Tree... Functions...

N
9 W BuiltinFunction Explorer lilg
9 Identifier | Description I Retum Type I Parameters | -
9 ‘Mmhs_ﬁnund Rounds the _Input to the nearest Integer <NUMBER:> <NUMBER:> _Input
N Maths_GetPi Gets the Value of Pi: 3.14159265358979 <NUMBER>
9 ‘Maihs_LesaThan Determines weather or not _A s less than _B <BOOLEAN= <NUMBER:> _A, <NUMEER> _B
“MathstreaterThan Determines weather or not _Ais greaterthan _B <BOOLEAN= <NUMBER> _A, <NUMBER> _B
9 mSystem_Geﬂ'\me Retums the cument Time on the System in the format HH:mm:ss <STRING>
9 ‘Sysiem_Beep Sounds a tone through the computer's speaker <WOID> C
“System_F‘layWav Plays the _WavFilePath as a Wav File <MOID> <STRING> _WavFilePath
9 ‘Sysiem_ﬂun Plays the _WavFilePath as a Wav File <WOID> <STRING> _Command
“F\IefﬁeadTa)d Retums all Text from inside the specified File <STRING> <STRING= _FilePath
10 N Flle_WrteText Writes the _Text to the File at _FilePath <MOID> <STRING> _FilePath, <STRING> _Text, <BOO
. Fle_Create Creates the File at _FileFath <STRING> _FilePath
1e NP Fle_Delets Deletes the File at _Fil=Path <VOID> <STRING> _FilePath L
1@ E DS_Slesp Intemupts continous execution for a duration of _MiliSeconds <WOID> <NUMBER: _MiliSeconds
“ DS_String_Split Splits the _String at each occurance of the _SplitAt Sequence of char... <STRING@:> <STRING=> _String, <STRING> _SplitAt Sequence
_String_Lengt etermines the number aracters in the String <l > > _String
1@ DS_String_Length D he number of Ch he S NUMBER: <STRING> _S
1@ ‘DS_Thmermr Stops execution immediately, Throwing a New D5SourceGeneratedE... <V0ID> <STRING> _EmorMsg
String ums the Character at _Index in the _String > = _String, <l > _Index
NP2 D5_st At Ret he Ch Ind he _St <STRING <STRING> _Si NUMBER> _Ind
1@ “ D5_Sting_Contains Determines if the _WholeString cortains the _SubString within it <BOOLEAN:= <STRING> _WholeString, <STRING> _SubString
“ DS _StringAmay_Append Retums a new <Sting@s with the tems of the _BdstingStingAmay, b... <STRING@> <STRING@> _BdstingStringAmay, <STRING> _...
106 | |NaDs_stingaray_at Retums the slement at _|ndex in the _Amay <STRING> <STRING@> _Amay, <NUMBER> _Index -
107:

e There are also a few user-interface components to touch up; | shall add some ToolTips in the
DSExpr (DocScript Standalone Expression Resolution Utility) program...

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

] |-, DocScript Standalone Expression Resolution Utility = 24
[Besolve J [Generate E!D'FII'ERJ
. Info
. ~True&” is th Li]
= Expr FusS is EAE ans Ctrl + Click to show Log
Status: Idle

-

...as well as some zoom and other graphics controls for the Windows IDE, using Matrix

Multiplications:

All

{tor,
rce Edi
.o the pocscript oot
This 15
. his
gen- ending t
'+ really be spmuch fun on
You Sh?“l 4 having hl; inside
muC' tl: gr phiCS P :f IDE.
maki?s cupposed t
ha

& DocScript IDE (Ben on WWMMNLTO1) I. = | B éj
g Home View Program Debug

6 Zoom; (1.29) Skew: (-8.63) Rotate: (32.08) M

Reset :I :I :I Animate

Status: Idle | 4 Line(s) | Line: 5, Col: 2 | Zoom: 120%

These features are intended to improve usability.

Progress Check

At this point in the development,
| have written 75726 Lines of
code...

80000
70000
60000
50000
40000
30000
20000
10000

0

o
0‘3\"’@'

& 0‘°\Q

&

Line Count

" 95

&
v
@9
&

5
S
U
Qg\

Vv
&
<
RS
)
&

v
v
L
N
%%
6’;\

.
R
Q'\,
&

9"
'\9\%@'
0c-,.\

(...Obviously not all of that code is here in this document; that would take over 2 reams of paper...)

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

[...Stage 5...]

Scenario-based Testing
Here, | enact some of the stakeholders' scenarios discussed in §Analysis, and evaluate whether or
not the software | have built fares well when used in these situations.

Remote Command-line Usage

Scenario: There is a terminal server and a client workstation on the same LAN. The user of the
workstation wishes to use DocScript (via the command-line) running on the Server, but from the
Workstation's Console.

How it's done: Of the four common ways of getting a remote command-prompt to another
computer (TELNET, PowerShell Remoting, PsExec, and SSH), PsExec can be considered the easiest, as
it requires no setup on either the client or server. To initiate the remote DocScript session, the user
at the Workstation types:

PsExec.exe \\ServerHostname -u Domain\Username -p Password DSCLI.EXE /Live]l

| tested this with the interpreter running on my Latitude (acting as a server), and connecting to it
over PsExec. | was then able to enter DocScript Instructions at the remote client computer (in this
instance running Windows 2000) and type commands which were executed on the Server. The
resultant output text was then sent over the network back to the client, and displayed.

DSCLI.EXE running on the Latitude: PsExec connecting to the Latitude Server:

Review and Improvements Herefrom

e IL-Merging: It would be nice to not have to carry around two files, in order to use the supposedly
simple command-line interpreter. The two files required at the moment are and
PocScript.Library.DLL]. However, | can merge the underlying .NET MSIL Code from inside

both binaries, into the same binary. This would mean that the user would only need to worry

about the presence of a singular .EXE File. To achieve this, | simply run [ILMerge . exe| thusly:
HLMerge.exe DSCLI.exe DocScript.Library.dll /out:ILM_DSCLI.exd

o A pre-defined .VBS file for easily initiating a remote DocScript session might be useful for some
users who struggle to remember the syntax for PsExec. It could ask for the Server Hostname via

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

file://///ServerHostname

an [InputBox), like this:

[n g
Enter Hostname

Administrative Scripting
Scenario: A network administrator wishes to create a quick script, to create 30 new user accounts on
the domain, from a text file of names.

How it's done: The Windows IDE would be best-suited to this task, what with the Syntax-
Highlighting, Program-Analysis features, and File-Interaction tools. The script might look something
like this:

o .
% DocScript IDE (Ben on \WMNLTOL) (= = e

u Home ViewPlus Program Debug
T New l I suCut @ E—T.y.t } £ Parse [F1) BZoomIn

&2 Open... k Construct (F2) ﬁZcum Out
Save e Insert Code Run L
V& Save As... [E] Paste Snippet.. * (F5) 3 Full Sereen

Ed Interp View

1 # Create UserAccounts from [Names.txt]
2'# Run this script as Domain‘\Administrator
3

<String> NamesFile : "Names.txt"

<String> DefaultPassword : "ChangeMe"

Function <Void> Main ()

0~ v

9 <String@> _Names : DS_String_Split(DS_File_ReadText(NamesFile), Const_CrLf())

11 <Number> _IterationsToPerform : DS_StringArray_Length(_HNames)

12 <Number> _CurrentIteration : @

13 While (Maths LessThan(CurrentIteration, IterationsToPerform))

14 _System_Run("NET User /Domain /fAdd " & DS_StringArray At(_Names, CurrentTteration) & " " & DefaultPassword)
15 _CurrentIteration : _CurrentIteration + 1

16 Endwhile

18 EndFunction

. 3

Status: Idle | 18 Line(s) | Line: 18, Col: 12 | Zoom: 120% | Saved File (UserAccountsFromNames,DS)

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

Mathematical-Expression Resolution

Review and Improvements Herefrom
Array Iteration: It would have been useful to have an Array-Iteration Code-Snippet built-in to
DSIDE, because it is a very common task. | shall therefore add this feature:

| & DocSeript IDE (Ben an TWMNLTOL)

-

& DocScript IDE (Ben on \\MNLM

o VP, 5= Lopy ¥T heag

Save
L&l Save As.. [5] Paste © . F

1 In fact, I actually do find this to be & good feature!

Insert Code Run
Snippet... ~

g Home WiewPlus Program Debug
3 New l I suCut i_-.i-' F } < Parse (F1) B ZoomIn
=2 Open... EECopy ¥ &+ Construct (F2) | J& Zoom Out
Save i Insert Code Rum .
L& Save As... Paste Snippet... (F5) = Execute (F3 ﬁFuII Screen
File L 2 » SampleProgram: Hello-Werld
1 Function <Number> Main (<5t -
2 S0 SampleProgram: Beep-Sleep-Repeat
3 <String@> _Array . -
4 _Array : DS_StringArray s EntryPoint: Unadorned
5 _Array : D5_StringArray == SR
[_Array : D5_StringArray g EntryPoint OS-Interop
7 @ Loop: Condition-Controlled
8 <Mumber> _CurrentIndex -
9 While (Maths_LessThan(@ Loop: Count-Controlled (While) ray)))
1@ Output("The current . vy, _CurrentIndex))
11 _CurrentIndex : _Cu @ Loop: Count-Cantrolled (Loop)
12 EndwWhile -
13 |-: Loop: Array-Iteration h |
14 Return @ G
&® If-Else-Stat t
15 EndFunction Q serststemen

§ LONSTIUCT |F& £5F L00m T

(F5) B

e (F3 3 Full Screen

A Find Dialog: It would also be very useful to be able to have a "Find" dialog for the Text Editor,
especially for highlighting identifiers which occur multiple times in the program. This feature is
actually built-in to AvalonEdit, so | have just added a button to activate it:

ad

- [()"

Scenario: An avid mathematician wishes to evaluate a series of mathematical expressions. He
dosen't want to write an entire DocScript program, if he dosen't have to.

How it's done: DocScript supports two means of satisfying this need; DocScript-Live, and the
DocScript Standalone-Expression-Resolution-Utility. Since the latter is written especially for this

purpose, let's use it. Here's an example:

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

. DocScript Standalone Expression Resolution Utility E‘_lg

[Resolve]IGenelﬁie ExprTree]

Bxpr: 5 +6 - 3

| Status: Idle

-
B ExprTreefor"5 + 6-3" E@g

View XML

:
2> Resolved Exprfor "5 + 6 - 3" ﬂ

Resutt:

[Above] A Demonstration of DSExpr.exe

Review and Improvements Herefrom

Resolution Window Improvements: It would be useful to be able to quickly dismiss a resolved
expression by simply pressing the enter key. The Result would also benefit from standing-out more
from the background of the window. | have therefore altered the window thusly:

.
2> Resolved Expr. ﬁ

55 * 8

440

Lok]

Interactive Multi-Client Execution

Scenario: A teacher has written a program, which she wishes to show her class. She wants all
students to be able to participate in the execution of the program, in real-time. She wants specific
students to enter input responses at given points during program execution.

How it's done: DocScript Interactive provides precisely this functionality. Here are the steps taken to
configure and host the Execution-Session...

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

1. Click "Upload Program", type-out or drag-in a DocScript Program, and click "Upload":

|nsi DocScript Interactive

Upload Program Join Session Manage Sessions Help!
Upload a Program!
Program Name

E.g. HellowWorld .Ds
The Program may be saved under a slightly different name, if the entered one is already in-use

Source

Type out a DocScript Program, or drag a DocScript File onto this WebPage

2. Create an Execution-Session for the Uploaded-Program with the [+ New...] button:

| Create a new Execution-Session... i

3. Get any clients (who want to participate in the session) to wait for initiation of the session
on the landing-page, accessible via the [+ Join...] button:

(e) EsID 4 “ ! Program: State: Finished Started: Ended: Exit-Reason:

BEEPFI_JOV - BEEPFIVE.DS 26/81/2923 @6/el/2023 ExitedNormally
6:38:33 6:3@:41 DSExitCode=181
{Afterncon) (Afternoon)

4. Initiate the session from the ESManager page from which it was created, and all waiting
clients will immediately begin to receive Execution-Session Events:
@ DocScript Interactive

Ueload Progran Joln £5 Hansge ESs tielal

Join Execution-Session

ES-State (SLEEP6_OUD)

The Exerution-Session starled al: 31/12/2022 11:14:15 (Morning)

Processing received Execution session Euents.

ES-Events

Output Events

» Tine Submitted Mezzage

Y 31/12/2022 11:18:16 (Morming) Slecping. ..

a8 31/12/2022 11:18:22 (Morning) o.Slept

Input Events

I Time Sumitted Prospe Respenze Responded-te Time

1 31/12/222 10:14:60 (Morning) Enter nane: gen 31/12/2022 1:9:60 (ATternoon)

Log Events

I Submitted Meszage Severity Category

153 31/12/2022 Began Parsing.. Infosation Parsing
11114015

(Morning)

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

Review and Improvements Herefrom

CEP and Program Deletion: It would be useful to be able to delete Uploaded-Programs and CEPs,
from the web interface, after they have been uploaded. At the moment, this has to be done from
, directly in the database. Therefore, | have added the HTML components, JavaScript AJAX
Functions, and Server-side APl EndPoints necessary to perform the deletion of both of these types of
DSI Objects, from the Database:

[11]

SLEEP6.DS
Uploaded 38/12/2822 9:21:58 (Morning)

[view m W pelete

| Removes the Uploaded-Program from the DSI Database... l

[...Stage 5...]

Unit-Testing

It would be more efficient to test many parts of the DocScript Solution via Unit Tests. These are
more repeatable, consistent, and automatic, than the scenario-based or whole-program tests. If |
cause an unintended side effect by changing one function, and this impairs the operation of another
function, then the side-effect will clearly show up in the Unit Test results. Unit tests are particularly
effective when there is a process which should take in a known input, in order to produce a known
output. It would — for instance — be very difficult to write a Unit Test for a Function like
GetRandomNumber ()], but very easy for something like Add (A, B)]. The unit tests for the entire
solution can be run regularly, to ensure that no new additions and modifications have any side-
effects on old parts of the solution, for which Unit Tests have been written.

As an example, the [GenerateUniqueString ()] method (used to avoid name-collisions for Execution-
Sessions in DocScript Interactive) should always produce the output ["PROGRA®"], when given the
Inputs [{"PROGRAM" }| and ["PROGRAM"]. (The parameters are [An array of already-taken strings] and [a

seed, off of which to base the new, unique string].)

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

To create the Unit Test, | shall simply

I 5] DS.CompilerExtentions.VB

[Left-Click] = [Create Unit Tests...]

Usernterface JS

This is what the Testing-Method looks like...

<summary>

A test for GenerateUniqueString()
</summary>

<TestMethod(}>

Public Sub GenerateUniqueStringTest()

Dim
Dim _Seed As String = "PROGRAM"
expected As String

actual As String

Dim =

Dim

_StringArray() As String = {"PROGRAM"}

"PROGRA®"

4 CollectionTypeExtentions -| % GenerateUniqueString
596 [[(Mullnet CompilerExtention) Returns all but the very last Element in the _Array|
597 [|Public Function AllButlast(0f _TElement)(ByVal _Array As TElement()) As _TElement() ...|
611
612 [[(Mullnet CompilerExtention) Returns all the Keys in the Read-only Dictionary|
613 & Public Function GetAllKeys(OF TKey, Tvalue)(ByVal ReadOnlyDictionary As Objectiiodel.ReadOnlyCollection(0F KeyValuePair(OF TKey, Tvalue))) As TRey() --o
619
620 B [(MullNet CompilerExtention) Executes thef” - m
621 PPublic Sub Fortachltem(0f TElement)(syRg create UnitTests
631
632 * <summary>(MullNet CompilerExtention) Current selection: Filter =
B33 """ The returned value will ALWAYS be thd e
634 U If the _seed is empty, and still not Types
635 " The SubstitutionChars are 91234567894 5[] () DocScript A
636 & (G;;k?al_Syste.m_Runti.lue_CmEiilerSel.'vi:es.E 4 [@ () DocScript.CompilerExtentions
S;I Pu ;:;“mm” S ST (5 4 [@ ¥ DocScript.CompilerExtentions, CollectionTypeExtentions
P Din _SubstitutionChars As Char() [] % AllButlast<_TElement> _TElement],])
48 [] % AllElementsareUnique<_TElement> (TElement[]]
641 "HELLO
642 "@ELLO
543) . GetAllKeys<_TKey, TValues (System.Collections.ObjectModel,ReadOnlyCollection’l < Systers. Collections.Generic. KeyValuel =
644 If Not _StringArray.Contains(_Sed B T
e If String. Tafiul10nEnpty(Seed] Th [] % GetStandardArmaySerialisation<_TElement> TElement]], optional System.String) L
546 [] % IndexOfFirstWhere<_TElement>(TElement]], System.Func'2<_TElement, System.Eoolean>)
547 ‘Here, the _Seed is already contd [] % IndexOfLastWhere<_TElement> (_TElementL], System.Func2<_TElement, System.Eoolean>)
648 [] =% Intersperse<_TElement> [TElement]] TElement]], System.UInt32)
2‘5‘: FF” :E‘:c;hari”:“““f ‘“: S:ei []“% Repeat<_TElement> [TElement, System.Ulntsd)
iy or _seedChar_Indexk = (_Seed.Lenf| [7]-% ReplaceWhere<_TElement>(TElement[], System.Func'2<_TElement, System,Boolean>, TElement]
. "Put in sach pessible Substif [] % SplitWhere<_TElement> (ref _TElement]], System.Func2<_TElement, System.Beclean)
653 For Each _SubstitutionChar As [[] % SubstitutedAtlndex<_TElement> (_TElement]], System.Int32, _TElement)
654 Dim _Seed_WithSubstitutig [] =% TakeBlockFromEnd<_TElement> (ref _TElement]], System.UInt32)
655 If Met _StringArray.Centa [[]+% UpToAndlncluding<_TElement>(ref_TElement[,], System.Func'2<_TElement, System.Baolean>)
Z:S Next []+% UpToAndincludingLasts_TElement> (ref_TElement]], System.Func2<_TElement, System.Boolean=)
[7] % UpToButExcluding< TElements (ref_TElement]]. System Func2< TElement, System Booleans)
653 MNext P 9 ok ok
659 [] % UpToButExcludinglast<_TElement> (ref TElement],], System.Func'2<_TElement, System.Bocleans]
668 Throw New Exception(”No unique va i+ [[]% DocScript.CompilerExtentions.ContrelExtentions
661 i 165 NincSrrin Coemmilart: NiateTirmeE: 2
662 Catch _Ex As Exception : Throw New D3 0 Vieual Bl test profect.
663 End Function Output project: Create 3 new Visual Basic test project... .)
664
665 B [(PullNct CompilerExtention) Returns a vl Settings.. | [Add Assembiy..
666 [Public Function SubstitutedAtIndex(Of Ti
672
673 End Module

DocScript.CompilerExtentions.CollectionTypeExtentions.GenerateUniqueString(StringArray, Seed)

Assert.AreEqual(expected, actual)

End Sub

...And when | run the Test, | can see that the method works as | intend:

.Test Results

*3- | §3 | Ben@MNLTO1 2022-12-2716:29:2 ~| | % Run ~ k& Debug ~ Il 4 | 5% =F ~ %1 3 | Group By: [N

@ Test run completed Results: 1/1 passed; Item(s) checked: 0

Test Mame

Project Error Message

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

[...Stage 5]
Stakeholder-Testing

Though, admittedly, | have to some extent pandered to
my own eccentric creative whims in the development of
this product, it is ultimately the Stakeholders, for whom
this programming language system has been designed. |
did a great deal of investigation at the beginning of the
project, into what the needs of these stakeholders were.

To be rather summary, these needs were:

e Keep it simple —any good teaching tool ought to be easy to learn and use

e Enforce features found in more advanced higher-level languages, such as: DataTypes,
Operators, Procedural Statements (while, if), functions or encapsulative units, built-in
libraries or functions

e Having the ability to use the system on a wide variety of different sorts of computer
systems (differing architectures and operating-systems)

e "Being able to get a lower-level view, of a high-level script you’ve written"; program
analysis tools

e Being able to evaluate stand-alone expressions quickly and conveniently

e Interoperability with existing commonplace programming systems, such as the input of
command-line arguments, and output of an exit code

Stakeholder Feedback
| sent an Email (with the DocScript binaries attached) to the 4 primary stakeholders, asking the
following of them:

e First impressions?

e Were you — without additional guidance — able to navigate through the program, and
find the features you were looking for? (Usability)

e How stable was the software?

e How quickly were you able to get up-and-running?

e |mprovements?

The gist of the responses was as follows: They generally found the product easy-to-use, performant,
and feature-rich. Subject to particular adulation, were the following features:

e The|DSCLI /Live|mode. Respondents actually indicated that this was probably more
convenient for expression evaluation, than the DSExpr| program which has been

specifically designed for this purpose, owing to the inline and single-window nature of
the console application:

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

B C:\Windows\dscli.exe

DocScript
fLive

—

Only use Statement-Contents Instructions (no Function declarations)
Exit with !Exit (or Ctrl + C) - learn more with !Help

Use ? to Resolve an Expression e.g. ?14 + 33

Use ; for Newline

M One of the stakeholders, decadently caught using Windows 10. (Fortunately, DSCLI
still worked!)

e The Program-Analysis dialogs in the IDE. These provided a more in-depth means of
understanding what the interpretation engine actually sees, from the typed-out source:

| GisbalVarDecs
DSfuncion
[DSFuncson] FUNCTION CNUMBER Makn (<STRING®> _CLis)
@ Fstomert] (- DS_Somgirey_Lengh_Clie) = 1)
5@ W Conterts)

P> FunctonCall0S_TrowEsox{Specky the Top row a3 _CLA) W Eroon Tme: O
T frchived Symel Tale ¥Sitemert” (0 Ertis)
1 NatabiDacluraton] STRING> Fow ' 05_Stvghray_At(CLA.0) o pobi
< () MihleSatemers] WHILE (~ DS _Strg_Lencth(Row) = 1)) Condtionar: OperetorBipe DSOperetor)
© Nasbladungravant]_Row : GatFomalow|_Fow) W Exacuion Time: Ome.

P FunctorCat] Ot Fow)
*5 [Fetum ToCaler] RETURN 0
= [DSFuncsion] FUNCTION <STRING> GetRowBelow (<STRING> _TopRow)
{ IebleDeclrston] <STRING> FomBeow ™
 NarsbieDeciuaton] NUMBER> _keratiorsToPem - OS_Stng_Lengeh(TooRow) -2
| IVansbleDeclarston] <NUMBER> _Cumertterston - 0
5 @) MihleSatement] WHILE (Maths_Less Than(_Cumetteason, teatsoraToPerdom + 1)
© Noabesancrmert]_Rowbon :_owbeom § GOWIDS._Sng_A(TooRow. Curerthrster), DS_Smg_ A TopRow, Curerterston + 1) N "?w" D
© NarablaAsngrmart]_Cumertteation _Cumerttersion + 1 B Exscuton-Tme: Ore
) FetunToCater] RETURN _RowBelow © Runun Sutia: BatinFurction_RasamiVabos = (1)

[DSFunchon] FUNCTION <STRING: GetCHd (<STRNG: _Parertn, <STAING: _Parer o) > psrand 1} LG £ NUMBER)
W Eecuton Time: Ors

©) Retum-Satun [Expression_Raechonent = (Tue}:

@ [isemert] F (ParertOne «_PamriTwo)
3@ 0 Corterts)

Feum St [Exprossion.ResckonResct = 1],
S) Onfincson (VatsbieDeclratin) VarsbisOscaraion (Fow)

) [RetumToCaber] RETURN _ParertOne B BecusionTime: Oma
@ e Comerts) © Retum o U
) FesgrmentBxpr. CalfunctionByName(DS_Stmgrey_A)
| Natatde Doclaraton] <STRING> _BothParerts - _FavertOre & _Pavert Two W Exscution Tms. tne

S @ [Pttenert] I DS_Stng,Cortars(_BothParerts,)" DS_Simg. Cortans{_EothPererts, ‘B

5@ O Cartort) - sy
[etomToCate] RETURN "G~ © R .
@ (1Suenert] IF [05_Swng_Cortarn(BthParerts. ") DS_Sing_Contane(_BothParerts, "G) Mgumert: UsraiE Of NUMBER)
=@ (¥ Corteres) M Execuson Time: Oms.
€) Retum Satus [Bpresson Resoktonfient « [0
 [PetumTeCale] RETURN B) TorBF. BFI0S_Srgimey A
<-4 [fatement] IF [DS_Swng_Cortars{ BothParerts, 'G")’ DS_Stng_Contansi_BothParerts, B W Execuion Tew Ome.

@ (¥ Conterts)
) [RetumTeCale] RETURN 'R
> FunctorCal] 0S_TrowEmer{ No Metch wes founfor "8 _PosriCne " nd & _PeretTwo) T rcived Syrbol Tale “WiieSatement” (0 Ervios)
© Rotam Sunn VA
) CandtionErx (Reschsion 0 Operstorier (DSOperter') -

s
WP BuiltinFunction Explarer (54 BIFs) . o
Identifier Description RetumType Parameters |

“Maths_ﬂcund Riounds the _Input to the nearest Integer <NUMBER> <NUMBER= _Input

N Maths_GetPi Gets the Value of Pi: 3.14159265358979 <NUMBER>

N Maths_LessThan Determines weather or not _Ais less than _B <BOOLEAN> <MUMBER> _A, <NUMBER> _B =
u Maths_GreaterThan Detemines weather or not _Ais greaterthan _B <BOOLEAN= <NUMBER= _A, <NUMBER> B
uSystem_GetTime Retums the cument Time on the System in the format HH:mm ss <STRING>

uSystem_GetHostname Retums the Hostname of the cument Computer <STRING=> —
N System_GetLsemame Retums the Usemame of the cument Computer <STRING>

USWm78m Sounds a tone through the computer's speaker VOID>

uSystem_F‘IayWav Plays the _WavFilePath as a Wav File <VOID> <STRING> _WavFilePath
uSystem_F{un Executes the _Command in the Shel <MOID> <STRING> _Command

WA File_ReadText Retums all Text from inside the specified Fle <STRING> <STRING> _FilePath

W File_Wirite Text Writes the _Tet to the File at _FilePath <VOID> <STRING: _FilePath, <STRING>
W File_Create Creates the File at _FilePath <VOID> <STRING> _FilePath

Wi Fils_Delste Deletes the File at _FilePath <VOID> <STRING: _FilePath

WA DS_Sleep Interrupts cortinous execution for a duration of _MiliSeconds MOID= <NUMBER= _MiliSeconds

u D5 _ThrowEmor Stops execution immediately, Throwing a New DSSourceGeneratedE... <VOID: <STRING: _EmorMsg

u D5_Irterpret Funs _Source as statementdevel DocScript source, in the context of ... <VOID> <STRING> _Source

u DS _Interpret Try Runs _Source as statementdevel DocSeript source, in the context of t... <BOOLEAN: <STRING> _Source

EANS IrtemnstPranrsm Runs PraaramSrirra ae 3 comnlste NS Pranram fwith 2 Main Foneti NI IMRER> STRING: PraammSairea 67 7
4 m 13 3

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

The ability to create ad-hoc ExecutionSessions from the UploadProgram page in DSI:

um 0

[2]

CEPCLIENT.DS
Uploaded ©2/01/2823 2:59:01 (Afternoon)

(This is easier than manually creating an execution session from the ExecutionSession-
Manager page.)

To desist from any more self-flattery however, it behoves me to enumerate — in some detail - the
shortcomings pointed out by the stakeholders:

e Oliver: "When I click on a Built-in Function in the BIF Explorer Window, it dosen't do
anything. | would expect it to do something!" Remedial Actions Taken and Justification:
| added an EventHandler which inserts a TemplateCall of the selected BIFs, into the
TextEditor of the Main IDE Window. The TemplateCall is a new Property on the BIF Class,
included specifically for this problem. E.g. for the Output BIF, the TemplateCall would

look like putput (_Text)|. The BIFs Window also now reports how many BIFs have been

inserted:

i Explorer (1 BIF(s) Inserted)

Description

Rounds the _Input to the nearest Inte
Gets the Value of Pi: 314155265358

e Kiran: "/ wanted to try out hosting DSInteractive on my personal machine, but there was
an lIS Web.config error with the WOFF MIME Types for the Bootstrap Fonts — what's that
about?" Remedial Actions Taken and Justification: This occurs because the Operating
System | was developing on was running Server 2008 R2 — which dosen't include the
WOFF MIME Type in the base-most Web.config — whereas this stakeholder was running
Windows 11 Enterprise, which does include this as a default MIME Type. | can't think of
any simple workaround for this problem, except from making an inline comment in the
Web.config which ships with DocScript:

i? = ¢!-- support for Bootstrap Icons. MIME Types herefor should only configured on cne *.config on the Server.
22 If they're already present in the machine.config, for instance, then having them here too will actually cause an error. -->|
23j= <staticContent>

24 <mimeMap fileExtension=".woff" mimeType="font/woff"/>

25 <mimeMap fileExtension=".woff2" mimeType="font/woff2"/>

26 </staticContent>

27

28 </system.webServer>

29
38 | </configuration>

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

Joe: "I attempted to use the [View Symbol Tables...] Button in DSIDE, but it didn't do
anything. What's it for?" Remedial Actions Taken and Justification: | had moved the
functionality of this button into a DocScript BuiltinFunction, accessible from the DS
Source using Pebug_ShowSymbolTables ()] I had forgotten — however — to disable or

remove this Button. | decided against removal however, on the grounds that users are
unlikely to discover a feature — albeit a very useful one — which they cannot see. Instead,
| made the Button show this MessageBox:

[Ds-DE s [

"-.I This feature has been moved.

Call "Debug_ShowSymbelTables()” from the DocScript Program, where
you wish to inspect the Symbol-Tables' current states

Klara: "Ich habe festgestellt, dass die Textausgabe von DSCLI manchmal unlesbar war,
wenn es eine Standard-BackColour fiir die Konsole gab, die der Vordergrundfarbe des
Ausgabetexts entsprach." Remedial Actions Taken and Justification: This was occurring
because DSCLI — in an attempt to be more user-friendly — uses different console
foreground colours where possible (in certain environments such as under PsExec, it is
not supported). The problem was that the foreground text colour was the same as the
console's Background Colour, meaning that the text was effectively unreadable. To solve
this, | need to set the Background Colour too. That makes DSCLI look like this...

K C:\Program Files (x86)\BenM\DocScript (Desktop Components\DSCLLexe

DocScript
~Live

Exit with *Exit <or Ctrl + C> — learn more with *Help
Use 7 to Resoluve an Expresszion e.
Use ; for MewLine

...a little odd on a darker console, but at least it will always be readable now.

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

Final Prototype
The Solution is now in a near-final state.

Prototype: This point marks Release Candidate 1 of the product, whose noteworthy features are...

Natively supporting Numeric-Literals of different bases in DocScript source. For example, 101 2

and and and [5] and all equate to the same numerical value, and are all valid

DS Expressions.
Interpreting DocScript Programs, in either a Command-Line, Windows-Program, or Web-Browser;

r ~ r 2
— =]
BR Administrator: Windows NTCcmma‘..EIE&J #/ UserAccountsFromMNames... E‘Eléj @ DocScript Interactive! x MR S == !
A 1# Create UserAccounts from [Names = C O Onpoa. @ 2 %« » 060 :
C:\Mindows\system32>dscli /live . 2 # Run this script as Domain\admin Wit @ 6 % O @ @ » | [oerboskmrs
- . B 4:45tring> NamesFile : "Names.txt™ 55l DocScript Interactive
PeresErt (L Iniiapreser 5 <5tring> DefaultPassword : "Chang|_ ™
Only use Statement-Contents Instruction ; Function <Voids Main ()
Exit with !Exit (or Ctrl + C), cls with 8
Use ? to Resolve an Expression e.g. 214 9 <String@> _MNames : DS_String_
Use ; for Newline e
ikl <MNumber> _IterationsToPerform
DS> 2101 2 iz CT"I\:MISEI") _Currentlteration : siaaing i
5 - 3 While (Maths_LessThan(_Curre = R=ne,
4 | . b il
DS> o - |
| 3 Status: Idle | | 18 Line(s) | Line: : i
or or =

Providing advanced program-analysis features, including Program-Tree generation (XML or GUI),
and Execution-Result exploration;

<Program> # Program Tree =R) ExecutionResult Explorer (- | ||
Ve L B Y= I
<GlobalVarDecs /» o5 [E B, Execution-Time: 615ms (]
<Functions> T N 8 Archived Symbol-Table "Global Symbol
- E R e | - L) Retum-Status: Program_ExtCode = [10
<DSFunction Identifier="Main™ ReturnType= L DSFunctons E1- 3 ErtyPont (Mar) Frcten. DSFurcton
<Parameters /> B [DSFunction] FUNCTION V0| [, Execution-Time: 1618ms
<Contents /5 | NarablsDegrtion] LI 8 Archived Symbol-Table “DSFuncti
. Retum-Status: (N/A)
</DSFunction> [P [FuncionCal] Outpu(_Tes 23 Chidnsructon (VarableDecratia
</Functions> - [DSFunction] FUNCTION <BO! " "~ Il ExcoutionTime: 655ms
- - LT o Y N Y
</Program> or < (0] v and B] -

Hosting real-time multi-client Execution-Sessions, for the collaborative execution of DocScript
programs with multiple participating clients;

@ DocScript Interactive G e e Manage Execution-Sessions

and —:——:::--m-

o B and
Facilitating standalone expression-resolution in both CLI and GUI environments:

?3_4 . DocScript Standalone Expression Resolution Utility bl = l
3 |
?11_4 [Resolve] [Genemte ExprTree] J 2> Resolved Expr. Iﬁ
5 Eqr 44 * 3 44 3
l?"H:‘llg; e e 85184

e o or. H
,

> - \

and

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

Development Review

Progress Recap: Where am | in the development plan? [Review]

o Done: | have written the DocScript Interpreter, and the three different implementations thereof.

e Next: There is more testing and evaluation to be done...

Revisiting the Requirements and Success Criteria Tables

Testing Table: Does this component function in accordance with the stipulated criteria?

| will now test the Final Prototype against the initial testing criteria, which were delineated back in

§Analysis.

Here, | have conflated the three Requirements and Criteria Tables from §Analysis, into one table.

Have the components | designed met the stakeholders' requirements?

Category Related Criterium (Analysis)

(Language)

(Language)

(Language)

(Language)

(Language)

(Language)

(Language)

(Language)

(Language)

(Language)

(Language)

(Implementation)

A Programming Language
Formal Specification
(LangSpec)

Serviceable Language Features

including:

Data Types

Predefined Functions (for
common tasks)

Encapsulative Units (E.g.
Functions)

Procedural Programming
Constructs (While; If; etc...)

OS Interoperability (CLAs &
Exit Codes)

Specialist Mathematical
Features:

BasedNumber Manipulation

Boolean Logic features

Maths Expression Evaluation

A Programming Language
Runtime (engine) which can
execute Scripts

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

N2

N2

Yes; the language includes this feature:
kString> Name : "Ben"|

Yes; the language includes this feature:
[System_Run("CMD.EXE")|

Yes; the language includes this feature:
Function <Void> Main ().]

Yes; the language includes this feature:
|While (Expr‘)...l

Yes; the language includes this feature:

N%

Yes; the language includes this feature:
[KNumber> Age : 101 2|

Yes; the language includes this feature:
lkBoolean> B : A|H|

Yes; the language includes this feature:
|Age : 4+5/2"[~9]|

Yes:

(Implementation)

(Implementation)

(Implementation)

(Implementation)

(Implementation)

(Implementation)

(Usability)

[Windows GUI] An IDE with
text-editing and script-running
abilities

[Windows GUI] A simple,
familiar graphical design

[Windows CLI] Takes a
Command-Line argument for
the script to run

[Windows CLI] Returns the Exit
Code of the Script just run

[Web Client] Runs on a variety
of different browsers on
different devices

[Web Client] Allows the user to
enter source code into a text
field and thereafter execute it

Singular Expressions can be
evaluated independently
(without having to run a whole
script)

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

DocScript.Li
brary.DLL

Yes:

= ~
2 UserfbccountsFromMames... Elﬂlﬂ—hJ

1# Create UserAccounts from [Names &
2 # Run this script as Domain‘\Admin| |
3

4 <5tring» MNamesFile : "Mames.txt"

5 «String> DefaultPassword : "Chang|_
7 Function <Void> Main ()

8

9 <String@> _Mames : D5_String_
1@

11 <Number: _IterationsToPerform
12 <Number> _CurrentIteration :

13 While (Maths_LessThan(_Curre -
< | m | b
Status:ddle | | 18Line(s) | Line:s

Yes:

3 MNew hoCut
¥ o ? B
= g

=2 Open... 5= Copy ¥
Save S Insert Code
WSave As... “wFind snippet...~

Yes:
[SourceFile:cvalue}

(Optional) [Datum] Specifies the Source via a DocS
cript Source File

Yes:

C:\Windows\system32>dscli /run /sourcestring:“functioncvoidsmain();endfunction”

Yes:

Google Chrome (~v50+)
Apple Safari

Moz://a Firefox

The API itself can actually be used from any
HTTP-compatible browser, including the
likes of Internet Explorer 1.0

Yes:
@ DocScript Interactive

T —— o

Upload a Progran!

Yes:

(Usability)

(Usability)

Instructions and
Documentation is organised
and easy to find

The Language is easy to learn
and use

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

I DocScript Standalone Expression Resolution Utility =

Expr: "HELLO" & ™ ,WORLD!™

Statusdie [3 pecoived Bxpr. ——

"HELLO™ " ,WORLDI"

"HELLO ,WORLD!"

Partially: There is a page in DSI (the web
system for DocScript) which contains help
and basic instructions, and there is a help
dialog in the IDE program.

However: this is not really sufficient.
Therefore, | require an easy-to-access,
quick form of help, which enables users and
newcomers to get to grips with DocScript.

To this end, | have decided at this point to
film a short "DocScript in 3 Minutes" video,
explaining how the system works.

In addition, on account of the stakeholders’
comments, | shall implement a pictorial
help feature in the DSIDE product, to more
visually explain the basic DocScript
concepts, required to start writing DS
Programs.

{See forthcoming Stakeholder-Feedback
section...}

DocScript in 3 Minutes

It was incidentally at this point, that the "in 3 Minutes" video was filmed and edited...

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

https://youtu.be/ybl5pVSJOOk
https://youtu.be/ybl5pVSJOOk

Testing and Evaluation

Overview
On completing §Development and Testing, | now have a functional set of software products, which —

as has been proven by the testing-to-inform-development — go at least some of the way towards
meeting the criteria and stakeholder needs.

¥/ HelloName.DS = B

E Home ViewPlus Program Debug
_;,New o CUE "', Undo : -i- : = Parse(F1) ﬁZQDmIn
0 =

\=2 Open... \’_'—'\:'Copy ¢ Zoom Qut
Save 4__ . Insert Code Run | | ﬁ
Jesave As... [E] Paste ‘-« Find Snippet... = I}EFS) . E Full Screen

1i#HelloName.DS

2 Function <Void> Main ()

3 <String> _Name : Input("Enter your name:")
4 Output(“Hello, " & _Name)

5 EndFunction|

m

Status: Idle 5 Line{s) | Line: 5, Col: 12 | Zoom: 140% | Saved File (HelloName.DS)

[Above] DocScript'®f with an example program
What remains, is to...

e ..More thoroughly test the reliability and robustness of the DocScript software.

e ..Assess the usability of [a] each individual component, and then [b] how effectually the
components fit together. Then, | will evidence these usability features, justifying
their success, and commenting, on how any as-yet unmet or incomplete features
may be added in the future.

e ..Determine — for each success criterium defined in the Analysis and Design stages —
whether it can be proved to have been met, by collected evidence.

e ..Remark on how any unmet criteria might be addressed, in the future.

e ..Declare current issues with the maintenance of the solution.

e _.Revisit the anticipated limitations from the Design stage, describing how they have
been tackled, and how any as-yet insuperable limitations might be overcome in the
future.

e ..Check-in with the Stakeholders for the last time, ensuring that they are (largely)
satisfied.

Reliability and Robustness

One of the primary stipulations of the stakeholders, had been that the DocScript system must
necessarily function across a number of "different platforms, architectures, operating systems, and
environments". Therefore, it is especially important that the software is dependable and reliable,
because the environments under which it is to run, cannot be guaranteed to be consistent. To this
end, | shall now test that this diversity of robust functionality does indeed work as | have described
it.

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

Predictability

| wrote a quick script to run 1000 instances of a DocScript program, which takes in a command-line
argument as an integer, multiplies it by 4, and outputs the result. The runner-script checks, that for
each execution, the expected result is produced. That script looks like this:

% Administrator: C:\Windows\System32\WindowsPowerShellwl.0\powershell_ise.exe
File Edit View Debug Help

NEeds&eax/ 9o bpEmE |« 8(FHoo

‘ ShouldBeMultipliedByFour.PS1 X

i1 #DocScript Predictability Testing Script
2 #Ben Mullan 2023

3

4 1..1000 | % {

5

& $ProcrocstartInfo = New-Object System.Diagnostics.ProcessStartInfo

7 $ProcrocstartInfo.FileName "D:\Benedict\Documents'\SchoolWork\Projects'\DocScript \Resources\Testing\DSCLI. exa"
] $ProcrocstartInfo.RedirectStandarderror $true

3 $ProcrocstartInfo.RedirectStandardOutput = Strue

10 $ProcrocstartInfo.UseshellExecute = Sfalse

11 fProcrocStartInfo. Arguments "/Run /SourceFile:""D:\Benedict\Documents'Schoolwork'\Projects\DocScript\Resources'\Test
12

13 fProc = New-Object System.Diagnostics.Process

14 $Proc.StartInfo = $ProcrocStartInfo

15 $proc.start() | out-null

16 $Proc.WaitForExit()

17

18 §stdout $Proc.StandardOutput.ReadToEnd ()

13 $stderr $Proc.standardError . ReadToEnd ()

20 if (($stdout "[A0-9]" ' (5_ # 4) .Tostring()) {

2 Write-Host "The DocScript Program produced an unexpected result...”
22 wWrite-Host "$_ * 4 =" + (§_ * 4) . ToString()

23 Write-Host "StdOut: |$5tdout|”

24 wWrite-Host "Stderr: |$stderr|”

25 Write-Host "ExitCode: " + $Proc.ExitCode

26 ¥

27

28}

30 Write-Host "Finished all Iterations”

PS C:\Users‘\Ben.MNDell> D:“Benedict\Documents\SchoolWork'Projects'DocScript\Resources\Testing\ShouldBeMultipliedByFour .PS1
Finished all Iterations

Test: | executed Powershell.exe ShouldBeMultipliedByFour.PS1], watching out for any output

besides the closure message.

Result: Success: There were no instances of the "unexpected result" message, so all 1000
interpretations of the program worked entirely consistently and predictably! This means that the
language can rightly be called reliable.

Justification: The use of a script here, meant that | didn't manually have to execute the DS program
1000 times. This saved time, and meant that the testing occurred in an automated, more consistent,
fashion. This was demonstrably a success.

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

Robustness: DSInteractive Mass-Testing
| set up a total of 12 different physical computers on the same Local-Area Network, so that | could
effectively test the performance of the DocScript Interactive system, when it is put under-stress.

. DS Interactive

Mass-Testing

Then, to demonstrate that DSInteractive has been designed with
extensibility and scalability in-mind, | used this Rack of
Enterprise Servers which | happened to have lying around, to
host the DSI Services. | had one physical server dedicated to the
DSI Database, which communicated over the network to
"""""""""" ! another physical server, which was hosting the APl and Client-
Pages from IIS. This could in fact be made even more distributed
via SQL Server and IIS Load-Balancing, but using 16 Logical (over
4 Physical) CPUs and 24 GB of RAM, to serve 12 computers,
seemed sufficient to me.

& Hosting DSI (SQL Server and 1IS)

‘M 1 also configured a local DNS record for the Web server, so that | wouldn't need to memorise the
IP Addr. of this server for all 12+ clients. This ended up being "DocScript.MullNet.NET.]", due to
the connection-specific DNS suffix for the Active Directory Domain on which DSI was being hosted.

Justification: This made orchestrating the mass-testing easier and quicker.

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

= = ———— - = =
() Performance Monitor - -y - E@g

(%) File Action View Window Help [=[=]lx]
| 7EE -]
@ Performance Performance Monitor

4 [Monitoring Tools

B8 Performance Monitor ? ﬂl" = X "" BB E q‘ i '”

a _‘;‘g Data Collector Sets

Pl 3 User Defined 30
» DocSeript IS

4 [y System
¥ System Diagnostics 25

¥ System Performanc

|| Event Trace Sessions
il Startup Event Trace Ses|

a [Reports
a ﬂ User Defined
4 [DocScript IS

MNLTO1_202301 151
MMLTO1_202301
MMLTO1_202301
4 f‘., System 104
> _ﬁ System Diagnostics
_ﬁ System Performanc|

e N

g UL 4
5:28:01 (Afternoon) 5:30:02 (Afternoon) 5:32:02 (Afternoon) 5:34:02 (Afternoon) 5:36:02 (Afternoon) 5:38:00 (Afternoon)

Last | 5000 Average | 2697 Minimum | 2000 Maximum | 5000 Duration | 10:00
L
Show Color Scale Counter Instance Parent Object Computer
Ird 10 User Connections --- --- MSSQLSSQLEXPRESS:Gen... W\MMLTOL
I 00001 Bytes Received/sec Intel[R] 825... --- Metwork Interface “WMMNLTOL
v 0.00001 Bytes Sent/sec Intel[R] 825... --- Metwork Interface SAMMNLTOL
| e

‘M Then, to monitor the load on the DSI Servers, | configured a custom PerfMon Tool, to graph the
SQL Server and Network activity for me. As can be seen from the above graph, the connections and
bytes sent/received do fluctuate a great deal, but this corresponds to the initiation or ending of an
Execution-Session, whereat all clients make several AJAX requests and sometimes refresh their
pages too.

Test: | ran the Mass-Testing in the described configuration for ~3 Hours, monitoring the graph, and
for stability of connections.

Result: Partial-Success: The servers did cope with the load reasonably well, but | did have one
problem with a specific CEP (bundle of JavaScript broadcast to DSI Clients during the Execution-
Session), which removed all elements of the HTML Document, replacing them with a single image.
This meant that the client would instantly attempt to fetch new Execution-Session Events, claiming
that it had no current Events in its memory (because these had been deleted from the HTML). Then,
the server would respond with all the ES Events (rather a large number of data), which the client
would fail to add to the now-non-existent ES-Events-Tables. This caused an infinite loop of requests

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

from the client, which instigated 100% CPU usage:

[er—— T+

ocahastE Chent

€ > C0 O
&+ 0@ m B G oo

ESu0..81.0a0 2023 17:39:48 GHIL

2 syrem itormanon

s (om0

= i ; e
B busadaia ket dd o SRS

208
P aary

4

N

= . L

o & i1

5, and that no Long-Polling Reu

= 8500 */
ages/BSOD.PIG" style="height: 100K; width: 100%;

Arst 480 Chars of Response:

ages"" LongPolllngTimedOut="False" >
172023 16:54:48 (Morning)" IaputisRaquired="False”

437 (orning)® Messaga=-Began Parcing.. "

Utilities,15:115
, and that no Long-Polling Request timed-out;

t1lirtes 35

o
4 /BS0D.PHG” style="height: 100%; width: 100%;

#ilities, 15119

The Server was similarly overwhelmed.

Remedial Actions Taken: To fix this, | added in a check before the ES-Events-Request is made by the
client, which ensures that the HTML Events tables are still existent. If they aren't, the request isn't

made, and the client realises that it is corrupted.

438
437
438
439

Vt

document.write CEP again.
*f

if (

447)
) 1

4s@
451
452
453
454
455
45/

T else {

/* The Element does not exist on the current [document].
Mot using Swal.fire(), because the resultant MsgBox might not be wisible */
window.alert("This ESParticipant will not listen for any further ES-Events, because at least one of t
document.title = "[CORRUPTED ES-Participant]™;

Some (dodgy) CEPs might document.write(), which causes Elements like #LogEventsTable to dissappear.
This causes the ListenForESEvents request to say that it has a ?CEPsCount of @, which sends all the
CEPs for this ExeSes over to the client *again*, which causes the client to execute the same

To prevent this, the below 4 if-statement ensures that the Tables still exist.

["#LogEventsTable™, “"#0utputEventsTable"™, "#InputEventsTable™, "#CEPsTable™].some(
function (_ElementSelector) { return ($(_ElementSelector).length == 8); }

The JavaScript function is similar to the .NET LINQ method.

This solution fixes the issue!

Usability Features

These are the features designed to make the logical and algorithmic parts of a program,
commandable from the point of view of the end user. They include visual aids (e.g. syntax
highlighting, or button placement) and control aids (e.g. the ability to quickly delete an Execution-
Session from the ESManager, instead of having to use ssms).

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

Stakeholder-Testing Meeting

I met with the four primary stakeholders, to show them the Progress | have made with the DocScript
products so far.

Together, we reviewed the following Usability Features...

In the Language Specification
Operators

Test: "Have the DocScript Operators been implemented in such a way as to meet the ease-of-use and
standardisation requirements which you — the Stakeholders - stipulated?"

Result & Comments: Positive: There is no operator overloading (thereby simplifying the learning
experience), and all the operator characters can be found on a standard UK-ISO Keyboard, such as...

...meaning that there are no ALT-Codes required for any of the symbols, including |~ | &%*/-+"~

Keywords
Test: "Are the DocScript Keywords clear, self-explanatory, and memorable?"

Result & Comments: Positive: The Statement-Closing notation of End{StatementType} e.g.

EndFunction| means that effectively only half the number of keywords need to be remembered,
since the statements all follow this pattern. In addition, the grand total of 6 Keywords, means that

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

there isn't a litany of complicated abstract jargon to memorise, for users of this simple scripting
language.

In the Implementations

Windows IDE
| discussed the following Usability Features of the DocScript© Windows™ IDE with the Stakeholders:

e Coloured Icons - Result & Comments: Positive: "These greatly improve the ease and speed with
which the software can be navigated visually; the eyes lock onto the colours in their locations, to
form a frame-of-vision, which enables a rapid memorisation of where different features are."

e Zoom, Full-Screen, and ViewPlus Features - Result & Comments: Partially-Positive: "It is very
useful to be able to zoom-in and -out, particularly for presentations and teaching and the like,
although I'm not sure if the Skew and Rotate options were really necessary. Nevertheless, then
don't impede the functionality of the product, just by being there!"

e Syntax-Highlighting - Result & Comments: Positive: "This is a veritably useful feature; in a
similar way to the coloured icons, it creates a frame in the mind's eye, which calibrates the
glances around the source code and IDE. This makes decomposing the program visually,
significantly easier."

e The All-In-One Run (F5) Button - Result & Comments: Positive: "This is much easier than
individually pressing F1, F2, and then F3."

e Keyboard Shortcuts - Result & Comments: Positive: "Great! Once you learn them, it makes
usage of the IDE faster than using the mouse for everything."

o The QuickAccessToolbar - Result & Comments: Negative: "The Microsoft Ribbon SDK provides
the ability to pin buttons to the QuickAccessToolbar, but in the DocScript IDE, this hasn't been
enabled — why not?"

Seemingly, | had to add a XAML Attribute to the RibbonButtons, to permit them to be added to
the QuickAccessToolbar. | quickly did this for some of the most frequently-used commands, so

that they can now be pinned... J Pinned "Copy" Button
+ r;' h— s L
ViewPlus Program Debug 2 DocScript IDE (Ben on \\MNLTO1)
JoCut 9 Tl £ Parse (F1) Eo |

a2 2 1y ;

ave :J P, [}f Add to Quick Access Toolbar Home ViewPlus Progr:
Show Quick Access Toolbar below the Ribbon _} Mew | I o Cut .
Minimize the Ribbon =2 Open... . 5= Copy ¥

Save

o The BackgroundWorker for Interpretation Operators - Result & Comments: Partially-Positive:
"It's good that the Interpretation takes place in a separate thread to that of the Ul, however we —
the Stakeholders — have noticed some odd behaviour with the [Cancel] Button not really working
for certain operations. For instance, if the DocScript program starts playing some audio, and the
Cancel button is pressed, then the audio continues to play, even after the ostensible cancellation.

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

This isn't really a huge problem though, especially in the vast majority of simpler, I/0-Based
Programs."
-
Status: Executing... | smmee| Cancel | 4 Line(z) | Line: 4, Col: 12 | Foom: 100% | Progral
oy

| Cancel the current BackgroundWerker Operation... l

Parenthetically, the number of available Keyboard Shortcuts in DSIDE has been expanded since those
mentioned in §Design; the Event Handler now looks like this:

43 FIPublic Sub HandleShortcutkey(ByVal Sender As Object, ByVal KeyEventArgs As KeyZventirgs) Handles Me.KeyDown

45 If (Keyboard.Modifiers = Modif Control) AndAlso (_KeyEventArgs.Key = Key.F5) Then : MsgDebug("Ctrl+fs") cerl + F5
46 ElseIf (Keyboard.Modifiers .Control) AndaAlso (_KeyEventArgs.Key .N) Then : Me.StartMewFile() cerl + N
a7 Elself (Keyboard.Modifiers Control) AndAlso (_KeyEventArgs.Key = Key.0) Then : Me.OpenFile() trl + 0
a8 ElseIf (Keyboard.Modifiers ntrol) AndAlso (_KeyEventArgs.Key = Key.S) Then : Me.SaveFile() cerl + 5

(_KeyEventArgs.Key = Key.H) Then : Me.ShowHelpWindow() 'Ctrl + H

se Elself (Keyboard.Modifiers (eys.Shift)

(
(

a9 Elself (Keyboard.Modifiers
(Andalso (_KEyEvEntArgS.KEy = KEJ,N) Then : ME.StartNEwDSIDEInStan(E() 'ctrl + shift + N
(
(

-)
51 Elself (Keyboard.Modifiers = (1 \shift)) Andalso (KeyEventArgs.Key .0) Then : Me.OpenContainingFolder() ‘Ctrl + shift + 0
52 Elself (keyboard.Modifiers = (1 _shift)) Andalso (KeyEventargs.Ke S) Then : Me.saverileas() ‘cerl + shifr + s
53 ElseIf (Keyboard.Modifiers = (M .shift)) Andalso (KeyEventArgs.Key .T) Then : Me.ShowProgramTree_InNewWindow() 'Ctrl + Shift + T
54 Elself (Keyboard.Modifiers = (M .Shift)) AndAlse (KeyEventArgs.Key y.R) Then : Me.ShowExeResTree InNewdindow() 'Ctrl + Shift + R
55 Elself (Keyboard.Modifiers = (ModifierKeys.Control Or | (eys.Shift)) AndAlso (KeyEventArgs.Key y.B) Then : Me.ShowliewBIFExploreriindow() ‘Ctrl + Shift + B
56 Elself (Keyboard.Modifiers = (Hodifierkeys.Control Or Modifierkeys.Shift)) Andalso (KeyEventArgs.Key = Key.H) Then : Call (New Pictorialielpwindew()).Show() 'CErl + Shift + H
57 ElseIf KeyEventArgs.Key = Key.F1 Then : Me.ParseCurrentSource() 'FL _ii? .
58 ElseIf KeyEventArgs.Key = Key.F2 Then : Me.LexCachedTokens() ‘E2 Keybventrgs Key As Key
sa ElseIf KeyEventArgs.Key = Key.F3 Then : Me.ExecuteCachedProgram() 'F3
8 Elself KeyEventArgs.Key = Key.FS Then : Me.RunCurrentSource() 'F5
61 Else : Return 'Don’t set the Handled as below
62 End If
63
64 _KeyEventArgs.Handled = True 'Don’t type the Keys into Me.SourceTextEditor
65

66 | End sub|

Other Implementations
Besides the IDE — which necessitates and claims a preponderance of the usability features — are the
other implementations...

AcceptButtons

| have ensured that all the main Windows and Dialogs have their Properties set. This
means that there is a default Button on the form, which is automatically clicked when the [Enter] key
is pressed. This enables faster navigation of the various DocScript windows, because — like the
Keyboard shortcuts — it minimises the level of mouse-interaction required.

. DocScript Standalone Expression Reselution Utility E =] ||§|

[Besolve] [Genen:lte ExprTree]

Expr:

Status: Idle

L_F 1

Test: Get the Stakeholders to attest to the benefit of having the s — Are they actually
useful, of does the additional blue border highlighting make the User Interface more confusing?

Result & Comments: Positive: | sent a copy of DSExpr. exe|to the Primary Stakeholder "Kiran", who
commented that this is a useful feature, which expediates navigation and usage of the package; he
could, for instance, easily close the ResultWindow dialogs by pressing enter, after having requested

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

the evaluation of an expression:
> Resolved Expr. ﬁ

&8

a8

Standalone Expression Evaluation

j-i-;' ddoudi 3 A i e 13 _fAmdAsd L E: . 1 i BLy Tl Al ‘tar“tNENFilE(:] 'Ctr-l + N
4 » Resolved Expr. 3 openrite() "Ctrl + 0
aveFile() ‘ctrl + S
howHelpWindow() ‘Ctrl + H
Key = Key.N) Then : Me.StartNewD:

1
1
1
1 "Some Text jj3-14159265358979" Key = Key.0) Then : Me.OpenConta:
1
1
1

"Some Text " Input(2) Maths GetPi()

Key = Key.5) Then : Me.SaveFileA:
Key = Key.T) Then : Me.ShowProgr:
Key = Key.R) Then : Me.ShowExeRe:

by S — S — ~
j::;::::: : E.!Egi:i:_i:f;'gz:;:zi g: ngi:i:{:: . DocScript Standalone Expression Resolution Utility | = | | i:
s.Key = Key.F1l Then : Me.ParseCurrentSource()
s.Key = Key.F2 Then : Me.LexCachedTokens() [Resolve J [GEHEEITE ExprTres]
s.Key = Key.F3 Then : Me.ExecuteCachedProgram(
s.Key = Key.F5 Then : Me.RunCurrentSource() Expr: "Some Text " & Input(2) & Maths_GetPi()
t set the Handled as below...
| Status: Idle .:;|
\

Test: Get the Stakeholders to solve some mathematical and Boolean-logic problems, using the
DSEXPR.EXE program. Is it easy-to-use?

Result & Comments: Partially-Positive: "The product is largely well-thought-out, and is useful for
quick expression analysis. It complements the DSCLI's /Live|l mode quite well in fact. It would be

nice, however, if the [Resolved Expr.] Window would automatically resize to whatever the length of
the output string is. This is not a problem with the mode, when using the feature."

Help Window
The IDE does include a Help Window, which — at the moment — looks like this:

B Docscript IDE: Help! E=EI

Worth Moting:
- Type _ to bring up DS Intellisense

Command-Line Argument Help:

Description:
DocScript Windows |Integrated-Development-Environment. Create, Execute, and Analyse DocScript Programs.

Examples:
DSIDE.exe /OpenSourceFile:X:\HelloWworld DS”

Argument Usage: (Keys are case-insensitive)
10 penSourceFile <Value= — (Optional) [Datum] A path (relative or absolute) to a DocScript Source-File
/Run — (Optional) [Action] Specifies that the DocScript Program in the file from /0 penSourceFile:<value> should be Run immediately.

Test: Get the Stakeholders to use the Help Window (Ctrl + H) — Is the information thereon useful?

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

Result & Comments: Partially-Positive: "This text-based help is of some use, and is better than
nothing, but isn't particularly extensive, dosen't introduce concepts about the DS Language, and isn't

visual."

Remedial Actions Taken: | have now written a "Pictorial Help" system for DSIDE, using many of the
same DS Architecture and system-mechanics diagrams from this document, and the DS-

Specification-PowerPoint.

The pictorial help can be launched using the dedicated button...

[VleWHIU-S Hrogam UEDUS
‘ 9 DocScript IDE: Help! - . S0

i Pictorial Help

Start..
Pictorial Help!

&

...or the KeyBoard ShortCut Ctrl + Shift + H.

It looks like this:

@ DSIDE Pictorial Help (Use [Ctrl] + [Tab] to cycle through..) L= | O [

| 2_DSArchitecture | 3_DSInterpretation | 4_Keywords | 5_ReservedChars | 6_InstructionTypes | 7_PossibleLine Types | 8_Operators | 9_Operato| + | * |

DocScript

on <Void> Main ()

FunCti "Hello) world!“)

output(
Return

endFuncti”

6 Keywords 3 DataTypes 15 Operators 3 Implementations

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

[Above + Below] DSIDE's Pictorial-Help Feature
@ DSIDE Pictorial Help wmmm}qﬁmmmlm oy X

Keywords:
If EndIf Else
While EndWhile
Loop EndLoop
Return
Function EndFunction

b

How the Implementations work together
| also need to consider how well the 3 (or four including DSExpr.exe) DocScript implementations
work together.

Firstly, it would not make sense for the Command-line Implementation, DSCLI.exe, to call on
features of the Windows IDE, DSIDE.exe. This is because using the command-line interpreter can
sometimes occur in non-desktop environments — e.g. via a TELNET or PSEXEC session. Such
environments would fail to invoke features of a graphical Windows application, and even if they
were invocable, the end user (sitting on the other end or an 80-column ASCII text terminal) would
not see any of the graphics reproduced.

Secondly, because the web-based client, DSInteractive, is designed
’j to run on different operating systems, it cannot be relied upon for a

particular subsystem to be present on the client. For example, were
all clients known to be using Internet Explorer 9, with Silverlight
enabled, then it may be worthwhile implementing a [Run in DSIDE]
button, for easy transfer of execution to the Desktop Interpreter.
However, because browser plug-ins are largely viewed pejoratively
these days, no such consistency can be expected, and therefore no
such feature can be implemented.

What does make sense — however — is to provide integration
from the Windows IDE, to the other DocScript products. If a Program Debug
user is running DSIDE (from a desktop WINSTA Session), then

it can reasonably be expected that other processes (such as =

wript Log | e

‘bug Events
) Launch | Runin
»logging pSEepr. DS-CLL.

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

the DSCLI command-window, or a web-browser instance) can be launched, and that the user will see
them. Therefore, the buttons in the adjacent image, exist within the DocScript® Windows™ IDE© to
facilitate such integration.

Future Additions: Stakeholder-Suggested

Usability Improvements

The Stakeholders did have some ideas for potential future
improvements, aside from those mentioned during my
questioning.

This is how any unmet criteria might be addressed, in the future...

e [Esc] to close Dialogs - "It's slightly inconvenient that the Dialogs in the DocScript software
products can't be closed by the escape key. This is a commonplace GUI feature, and it would be
nice to have it here too." Future Action to Take: | will add an EventHandler to the

Event of the Forms, which calls |.Close ()] if the |. KeyCode] is equal to [Keys . Escape].

e An Installation Wizard - "It's good that the products don't require installation, however it would
be useful if there were an InstallShield-style wizard to more permanently install the DocScript
Software. This would be particularly useful for deploying DocScript across an AD-Domain using
Group Policy, if the installation package were an file." Future Action to Take: | will create
an MSl installer for the DocScript Desktop Components (everything except from DSInteractive,
which requires an SQL Server Instance). Visual Studio supports the creation of MSI packages
natively, and they include both a Graphical and a Silent means of installation.

e An Animated SplashScreen - "The current SplashScreen for DSIDE is adequate, but it might be
nice to be able to tell precisely what the Process is actually loading." Future Action to Take: |
ought to be able to add a loading-bar or text-label to the SplashScreen, making it a Window,
instead of just a PNG as it is at the moment. For example, the Photoshop CS5 SplashScreen has a
loading label of the sort | mean.

e Use of a VCS or Source Control System - "As the development of DocScript continues, you may
wish to collaborate with other developers. This would necessitate a Version-Control-System,
which can track changes and handle merging or altered lines in different parts of a file." Future
Action to Take: Although it would be best to use VS-TFS for this, | must regrettably concede that
— these days — the only realistic way to host the DocScript source-code to be freely-accessible,
centralised, and have documentation in one place, does seem to be GitHub. There is a version of
the Git Source Control System for VS 2010, which | have started to experiment with, and would
have to admit that it's actually rather nice. This system will therefore be part of DocScript's

git

future, for pragmatic reasons.

Microsoft® = 5 =

Visual Studio
Team Foundation Server2010 -

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

Future Additions: Personal Ideas
In Addition, | do have some personal thoughts about exciting features I'd like to integrate into
DocScript in the future...

DocScript Remoting! — The ability to remotely execute DocScript programs on a target
computer of the user's choice. | think I'd build this in as a feature of DSIDE, so that if
DSIDE.exe were to be running on two computers on the same Network, then they could
use TCP Networking to communicate over a certain port, and one DSIDE instance would
receive a program-to-execute from the other, which would be interpreted ad-hoc.
What would be really neat, is if there didn't even need to be a DSIDE client running on
the target computer though. | could use PsExec to connect to a machine (with supplied
credentials), select a Logon Session, and instantly run a DocScript program thereon.
(Rather a lot of fun could be had with this feature, | feel)

DocScript Compilation! — At the moment, this in an Interpreted Programming Language.
However: | have been thinking about how | could extend it to permit compilation of a
DocScript program to a self-contained .exe file. | would do this by translating each line of
the DocScript program (one of the 8 possible lInstruction Types) into a corresponding
Visual Basic .NET line. The two languages are — by no coincidence — rather similar, so this
translation would be quite doable. Then, | would save this generated Visual Basic source
to a .VB file on disk, and automatically run (the Visual Basic .NET Compiler) to
generate an .exe file. There would be a Compilation-Options dialog before this to allow
the user to choose e.g. an Icon to use for the output .exe. To get the Built-In-Functions

to work, | would have to include a copy of DocScript.Library.DLL| next to the output

.exe. However, | could solve this problem by automatically running ILMerge.exe, on the
.exe and .dll.

DocScript Graphics! — The ability to use DocScript to create basic GUI applications. At a
basic level, | could take a Microsoft-SmallBasic-like approach, and have some Built-in

Functions for managing a single GraphicsWindow, e.g. [Graphics_DrawText("Hello",|
5o, 50, "#0A@AGA")|and |Graphics DrawImage("X:\DS\Client.PNG")|.
Alternatively, | could even use some form of markup language to generate user

.HTML, [. XAML, or |. DSGUT] file).

interfaces from (e.g. a WinForms |.Designer.V8),

It must be said, however, that there comes a point at which these advanced
features can't really be used to their full potential; DocScript has been designed
from-the-ground-up to be a SIMPLE and UNPRETENTIOUS system, and bolting-on
advanced functionality is ultimately limited by the simplistic nature of the
programming language itself.

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

Testing Tables & Success Criteria
There were 3 tables from the [Analysis] stage, and 1 from the [Design] stage, which | need to
officially sign-off. Reminder: The Analysis-stage tables have already been reviewed at the end of

§Development.

Testing Checklist (Interpreter DLL)

- Now that the vast majority of the development is complete, myself and the
v Stakeholders shall perform each of the following tests, to ensure that the
requirements have been met. This testing table was delineated back in §Design.
Assert-style Test Passed?
An error is thrown if two variables are declared within the same (or relative downstream) Yes

scope, when both variables have the same identifier, or the identifiers differ only by case;
the language is not case-sensitive

Variables can be declared in each of the 6 valid DataTypes (The 3 DataTypes, and their Yes
Array variants)

A high degree of verbosity is present in the error message resultant of an attempt to Yes
lexically analyse the expression (e.g.)5 + + 4

A Function can be declared with linstruction-based contents statements inside, such as an Yes
IfStatement I+ (Expr) {LineEnd} .. EndIf

A Global variable can be declared outside of any Functions (E.g. <String> NameGlobal Yes
= "Ben Mullan; S7; Y13; U6;")

An error is thrown if a Program is written without an EntryPoint Function Main Yes

A DocScript Program can be written to output "B" if Command-Line Argument [0] is "1", and | Yes
"C"ifitis "2" (Just an example, to prove that CLAs can affect programme output)

A DocScript program can be written to Output() "Hello, World!" Yes
A DocScript program can be written to take Input () from the user Yes
A Comment can be specified with # Comment {LineEnd} Yes

The Expr [5 + 3] * 9resolves to 72 whereas5 + [3 * 9] resolves to 32 (proof that Yes
brackets work)

The numeric literals 10, 10.0, and 10_10 are all magnitudionally equivalent Yes

All of the Test Data run successfully in the DocScript System & Implementations Yes

Each of these tests was performed by the stakeholders, on their personal computers. It is my hope,
that the copious screenshots and other media evidence provided hereinbefore constitute a sufficient
volume of evidence for these tests...

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

Extended Testing Evidence
...However, to pander deferentially to the mark scheme at whose mercy this document lies,

am
providing this supplemental evidence of the products having passed these tests:

1:Function <Number> Main (<String@> CLAs)]

2 . 9 : b

3 <Numbers A | DocscriptExceptions Dsexception) J_ H { N umoer :1‘

4 <Number> A]

5i E@I A Fatal Exception was Thrown whilst "Interpreting..."s 2 H { N u m be P@>
6 Return @ b :

; (Logged) @Program’Run

(Logged) @SymbolTablesSnapshot\AddEntryToToTopmost
(Logged) @SymbolTable\AddEntry : -
(Logged) [DSDuplicateSymbolException] An Entry already existed in the 4 i { 5-t rl. 1 ng@}
SymbolTable(s) with an identifier (in squares) of [A]. (SymbolTable]
Description 2
DSFunction_Main)

5i<Boolean>

A

| B
|Frdruncton Lo Shapprpon ot 32{5tring> C
| D
E

6i<Boolean@> F

Exception: {Logged} BConstructExpressionFro SR s petvety
CLogged>» BElalidateLBL -
. . . eturn o
CLogged?» [DSELBLUalidationException] The LBI |conie
Qperators next to each otherl.
1i#No Main
2:Function <Void> Bane ()
3:
A:EndFunction | DocScriptExceptions.DSValidationException 23]
W ‘-.I A Fatal Exception was Thrown whilst "Interpreting...":
- (Logged) [DSValidationException] The Program must contain exactly 1
EntryPoint Function Main. The valid signatures are
{[Identifier="MAIN", ParameterTypes="{}", ReturnType="Veid"], [
Identifier="MAIN",
ParameterTypes="{DocScript.Language.Variables.D5Array1[DocSeript.L
anguage.Variables.D55tring]}", ReturnType="DSMNumber” 1}, Invalid
Content (in [])
[(The absense of a valid Main Functien) The Program's Function
Signatures were
{[Identifier="BANE", ParameterTypes="{}", ReturnType="Void"]}].
4

: : Function <Number> Main (<String@> CLAs)

1 |
r} If ([10 10 = 18] ' [10.0 = 18])
o 3: Output("They're the-same")
Function <Number> Main k(String@) _éLAé) 4: End I-F -
| 5! 3]
6

Command-line Arguments:

2

If (DS_StringArray At(_ClAs, @) = "1") -
Output<"§") Y Return ~1 DocScript: Qutput

EndFunction

1
2
3
4 EndIf

5 If (DS_StringArray At(_ClLAs, 8) = "2")
6

7

8!

9

OQutput("C")
EndIf
Return ~1
EndFunction

:] They're the-zame

«

Status: Executing... Abort |9 Line(s) | Line:9, Col: 12 | Zoom: 140% | Progras

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

Future Maintenance
Further to the comments | made about the use of Source Control, the aspects of DocScript's Future,
are as follows:

e Accessible — There is now a GitHub "Repository" for DocScript, which means that anybody can
PULL down a copy of the entire solution, and see how DocScript works, or make changes and
improvements. | do find many of the features of Git to be sloppy and hideously-inconsistent

(such as the complete lack of uniformity in the filenames README .md], |. gitignorel,
ILISCENSE. txt], and
alternatives to "GitHub", so DocScript seems to be along for the ride, as it were.

https://github.com/BenMullan/DocScript.git

.gitattributes]), but there nevertheless don't seem to be many

o Product Solutions Open Source Pricing ! Sign in | Sign up |

& BenMullan / DocScript | Pubiic 0 Motficaions | ¥ Fark 0 fr sar 0

{3 Code (I Lssues [Pullreguests (& Actions [Projects @ Security | Insights

+ master - ¥ loranch ©1tag Go to file m About

Simple, procedural programming
n BenMullan Miner READMEMd change. 277eb52 3 daysago %) 22 commits language, supporting real-time, multi-

client Execution Sessions, and numeric

D5CommandLinelnterpreter Changed to .NET 4 last week iterals in different bases. BM A-Level C5
Coursework 2023,
DSExperimentation Mew DS_Boolean BIFs for the Lightswitch Problem, which is now able to.. ast wieek oursewark s
- - o [Readme
DSExprResolutionUtility Changed to MET 4 last week
B3 Unlicense license
DSIExecutionSessionWWarker Changed to MET 4 ast week - =
¥r Ostars
DSLibrary DS _Boolean BIFs for the Lightswitch Problem, which is now able to... ast week @ 1watching
DSSetup w DS_Boolean BIFs for the Lightswitch Problem, which is now ast week ¥ Oforks
DSWebParts Added DS3Min Video last week
DSWindowsIDE Added DS3Min Video ast week Releases 1
[.gitattributes Add (gitattributes, .gitignore, and LICENSE txt ast week © I?eleasicandmalel \Latest)
ast week
M .gitignore ast week
DSIDE Demo.pn Mo ADME changes 3t weel
[DSIDE Demopng viore README changes st week Packages
M DocSeriptSigningsnk Add project files. last week
[DocScriptsin Changed README ast week
[LUCENSEndt Changed README ast week Languages
[OldAndUnneeded VB Add project files last week LU
® \isual Basic MET 87.5% JavaScript 8.0%
[READMEmd Minor README.md change. 3 days ago ® ASENETZ2% ® TSQL19%
VBScript 02% @ (550.2%
[desktopin Add project files ast week Ve .

o Flexible — The fact that the solution is extremely modular and extensible, means that sub-
components of DocScript can easily be implemented into other products. For instance, if an
application such as an image-editing package, required basic scripting capabilities, then
DocScript could straightforwardly be embedded — using the Core Interpreter DLL — along with a
few custom BuiltInFunctions, to permit automation of certain image-manipulation tasks. Many
products use scripting languages such as Lua to achieve a similar goal.

e Approachable — The extensive comments, inline-annotations, and specification diagrams

provided with the solution, mean that navigation of the project ought to be at-least tractable, if
not almost enjoyable. The self-evident variable names and identifiers have a similar effect.

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

https://github.com/BenMullan/DocScript.git
https://www.lua.org/cgi-bin/demo

Limitations - Or were they?
Here, | revisit the limitations which — several months ago in §Analysis — | anticipated encountering
throughout the development. Were they genuine concerns?

o The Breath (complexity) of the Solution: "How many built-in functions will be available?
Will there be additional encapsulative features such as namespaces? How many complex
operators can be used for the mathematical expressions?"

Outcome: Once | got started, | rather quickly picked-up pace with the development (the
solution is now at 82,634 lines), and was therefore able to implement more features
than | had thought | was going to be able to. There is a multiplicity of Built-in Functions,
and it's easy to add more. There aren't any namespaces yet, but that wasn't really

required, because the BIFs use the [{Category} {Name}| nomenclature, e.g.

System Run()| There are all the standard mathematical operators, and then some;

many languages don't have exponentiation or modulo operators.
The breadth therefore never became an effectuated limitation.

e Excessive Complexity: "...any worthwhile programming language must be sufficiently
complex as to enable the programmer to develop at a reasonable pace, once familiar
with the system. At the same time, this language has the paramount requirement that it
be simple to use and learn."

Outcome: Having seen the language being learnt for the first time by several
stakeholders, | would argue that it is more approachable than most other languages, but
acknowledge that there are nevertheless still a number of slightly more unconventional
elements — such as the explicit separation of Parsing, Lexing, and Execution — which
many newcomers won't instantly understand.

Excessive Complexity therefore became a small but unavoidable problem.

e Mandatory Use of a Keyboard/Mouse for Interaction: "Having to interact with the
programming language in a conventional, predominantly keyboard-based fashion (which
was agreed upon by the stakeholders to be suitable) does of course mean that people
with certain disabilities, which make it difficult for them to type, may be unable to make
full use of the software."

Outcome: | have not come across any stakeholders (so-far) who have been unable to
use a Keyboard or Mouse to interact with the software. Even if such stakeholders were
to make themselves known, I'm afraid that the problem isn't in the scope of this project.
Keyboard usage therefore isn't a relevant limitation.

o Difficulty of Development: "Since | have not implemented any complex expression
parsing in my programming before, this is something | shall have to learn much more
about."

Outcome: | initially researched Parsers and Abstract-Syntax-Trees from an old book from
the 1980's (COMPUTER SCEINCE, 4™ Edition, C. S. French), but progressed onto a
Masters' Course on Compilers, from the university of Washington. After tens of A3
sheets of planning, and thinking about how to create such a complex system, |
eventually came up with — what | haughtily considered to be — a watertight structure.

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

(I'm still somewhat surprised that | haven't discovered some gaping hole or structural
problem somewhere in the logic (It may just be a matter of time...))
Hence, the Difficulty wasn't an insurmountable limitation.

e Security: "...since it is a system of such complexity, and because there are a very large
number of edge cases and unaccounted-for pieces of input, certain scripts may
potentially cause insecure behaviour such as buffer overflows or injection."

Outcome: | have not come across any security flaws so far, and | do claim that if properly
configured, there is nothing insecure about any of the DocScript products. However: The
component most susceptible to security issues would be DocScript-Interactive (the web-
based implementation). Misconfigurations of the system user accounts under which the
Web Server and SQL Server run, could in-theory expose private areas of a computer.
Although the Security hasn't been an issue hitherto, it's possible that it could lead to
problems in the future. Therefore, to overcome this limitation, | could produce a more
in-depth setup guide for DSInteractive, to reduce the likelihood of misconfigurations.

Conclusion
| led a final check-in with the Stakeholders, at the end of what h

[e -y

as been a 12-month project...
E f

Stakeholder Comments
The Stakeholders made the following concluding comments:

e It's a very convenient and portable set of powerful and well-thought-out programs. In
particular, the DSCLI /Live mode is very useful for expression evaluation.

e The products are effective as approachable pedagogical teaching tools. Specifically,
DSInteractive is great for multi-client algorithmic demonstrations.

e |t certainly would be exciting to see the DocScript-Compilation, -Graphics, and -
Remoting concepts come to floriation.

Where's All the Code?
It's here, or at http://BenM.eu5.org/ under "DocScript".
The more decadent amongst you, may even wish to use https://github.com/BenMullan/DocScript/.

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

https://1drv.ms/f/s!AlUs85FIEgtQhyGTIRj17AAWBPt6?e=UjutA1
http://benm.eu5.org/
https://github.com/BenMullan/DocScript/

Appendix

Abbreviations

e IR Intermediate Representation (e.g. an AST or Instruction Tree)

e |[BL Linear Bracketed Level (ExprTree Construction)

e |OT Intermediate Operator Tree (ExprTree Construction)

o SCI Scanned Component Indicator (ExprTree Construction)

e ESID ExecutionSession Identifier (DocScript Interactive)

e TPV Tokens to (Token)Patterns Validator (Lexing)

e CEP Client Execution Package (DocScript Interactive)

e BIF Built-In Function

Notation

e No. Number Of

e UpToinc * Up-to and Including *

e UpToExc * Up-to but Excluding *

o <*> Of the DataType * (DocScript Source)

o ¥ * is an Identifier for a Local Item

o ¥ *is an Identifier for a Private or Protected Item

o ¥ * is an identifier for a Friend Item

o ¥ * is an Identifier for a Static (not Shared) Variable

o T* * is a Generic Type Specifier

o ¥ *is an Interface

e Ensures * Throws an Exception if * is not the case

e DS*Exception * is a DocScript DataType inheriting from System.Exception
o [¥*] WebParts: * will be returned by the API, as an XML Attribute
o [..%] WebParts: * will be returned by the API, when Long-Polling ends
o [<*>] WebParts: * will be returned as an XML-Child of <ResponseContent>
References

e https://courses.cs.washington.edu/courses/csep501/14sp/video/archive/html|5/video.html?id=csep501 14sp 1

e https://greg4cr.github.io/courses/springl6csce747/Lectures/Spring16-Lecture23PostRelease.pdf

e https://www.codeproject.com/Articles/12335/Using-SqlDependency-for-data-change-events

A-LEVEL COMPUTER SCIENCE PROGRAMMING PROJECT | Ben Mullan

https://courses.cs.washington.edu/courses/csep501/14sp/video/archive/html5/video.html?id=csep501_14sp_1
https://greg4cr.github.io/courses/spring16csce747/Lectures/Spring16-Lecture23PostRelease.pdf
https://www.codeproject.com/Articles/12335/Using-SqlDependency-for-data-change-events

